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1. Background 

Low-frequency fluctuations of the ocean and atmosphere over the North Pacific 
Ocean on interannual to decadal timescales significantly impact the weather and climate of 
North America and Eurasia [see review by Alexander, 2010], and drive important state 
transitions observed in marine ecosystems across the Pacific Ocean [Roemmich and 
McGowan, 1995; Mantua et al., 1997; Hare et al., 1999; Martinez et al., 2009]. 
Understanding how and if these natural climate cycles are altered by a changing climate is 
therefore of broad scientific and socioeconomic interest. 

Low-frequency variability in the North Pacific 
Previous studies document the wide-ranging impacts of North Pacific climate 

variability associated with the Pacific Decadal Oscillation (PDO) [Mantua et al., 1997; Zhang 
et al., 1997; and others]. The PDO emerges as the first mode of North Pacific sea surface 
temperature (SST) variability, and is highly correlated with the dominant mode of sea 
surface height anomalies (SSHa) [Chhak et al., 2009]. Its temporal modulations are linked to 
several important biological and ecosystem variables in the ocean [Hare et al., 1999; 
Martinez et al., 2009; Hare and Mantua, 2000]. To first order, the PDO is a forced response 
of the North Pacific ocean to atmospheric forcing by variability of the Aleutian Low (AL) – 
defined as the first mode of sea level pressure anomaly (SLPa) variations in the North 
Pacific (Figure 1) [Newman et al, 2003]. SSHa anomalies associated with the AL/PDO also 
excite westward propagating oceanic Rossby waves that drive dominant decadal scale 
variations in the North Pacific western boundary with a lag of ~3-4 years [Qiu, 2007; and 
others]. 

Recent work by the PIs has shown that low-frequency variability of the North Pacific 
is only partly explained by the PDO [Di Lorenzo et al., 2008]. A more complete 
representation of the decadal dynamics of the Pacific must include the North Pacific Gyre 
Oscillation (NPGO). Defined as the second dominant mode of SSHa variability in the 
Northeast Pacific [180°–110°W; 25°N–62°N], the NPGO captures the second mode of North 
Pacific SSTa (Figure 1) [Di Lorenzo et al., 2008] and drives prominent low-frequency 
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changes in physical and biological variables across the Pacific (e.g. temperature, salinity, 
sea level, nutrients, chlorophyll-a, [Di Lorenzo et al., 2008; 2009; and others]), including 
strong state transitions in marine ecosystems (e.g. fish, Sydeman and Thompson, 2010; 
Cloern et al., 2010]). Like, the PDO, the NPGO is a basin-scale feature, capturing changes 
in the strength of both the North Pacific Current (NPC) [Di Lorenzo et al., 2009] and of the 
Kuroshio-Oyashio Extension (KOE) [Ceballos et al., 2009]; it also tracks significant SST 
anomalies in the tropical Pacific [Di Lorenzo et al., 2008; Nurhati et al., in prep].  

Figure 1: Correlation Maps of the two dominant modes of North Pacific variability. Top row 
shows the SLPa correlation maps of the first two modes of North Pacific atmospheric variability, 
referred to as AL and NPO. Bottom row shows the SSTa correlation maps of the two dominant modes 
of SSTa variability, referred to as PDO and NPGO. 

 
More recent work by the PIs has shown that the NPGO is the oceanic response to 

atmospheric forcing associated with the North Pacific Oscillation (NPO) [Di Lorenzo et. al., 
2008; 2010 (see Appendix 7); Chaak et al., 2009]. The NPO, defined as the second 
dominant mode of North Pacific SLPa (Figure 1) [Walker and Bliss, 1932; Rogers et al., 
1981], is a well-known pattern of atmospheric variability that affects weather patterns over 
Eurasian and North America, particularly changes in storm tracks, temperatures, and 
precipitation [Seager et al., 2005; Linkin and Nigam, 2008; and references therein]. 
Therefore, both the PDO and the NPGO have their origins in distinct North Pacific 
atmospheric modes of variability, namely the AL and the NPO, respectively. 

While the dynamics of the two North Pacific coupled ocean-atmosphere climate 
modes – the AL/PDO and NPO/NPGO – include elements independent of the tropics [Latif 
and Barnett, 1994; Barnett et al., 1999; Pierce et al., 2001; Liu et al., 2002; Chaak et al., 
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2009, and others], several studies have shown both statistically and dynamically [Pierce et 
al., 2000; Deser et al., 2004; Alexander et al., 2002; 2008; Vimont, 2005; Newman et al. 
2003; Di Lorenzo et al., 2010] that a significant fraction of the interannual (2-7 year band, 
~40%) and decadal (>7 year, ~40-75%) variability of both the AL/PDO and the NPO/NPGO 
is also driven by variations in the tropics. 

Coupling and Feedbacks between the Tropics and Extratropics 
 Tropical Pacific climate variability is dominated by ocean/atmosphere coupled 
dynamics associated with the El Niño Southern Oscillation (ENSO). The traditional, or 
canonical, expression of ENSO is characterized by a pronounced eastern Pacific warming 
(EPW), a weakening of the trade winds, and positive (negative) SLPa anomalies over the 
western (eastern) tropical Pacific (Figure 2). These changes in the tropical atmospheric 
circulation modify the large-scale Hadley Cell and extratropical atmospheric circulation 
patterns via atmospheric teleconnections. Specifically, it has been shown that ENSO 
extremes excite variability in the AL through a well-known “atmospheric bridge” [Alexander, 
1992; Alexander et al., 2002]. The ENSO-derived variability of the AL is integrated and low-
passed by the ocean to yield the decadal PDO pattern in the North Pacific [Newman et al., 
2003], providing a strong dynamical link between low-frequency climate variability in the 
tropics and extra-tropics.  

In contrast to the canonical EPW-ENSO, recent studies isolate a new flavor of El 
Niño [Ashok et al., 2007; 2009] that has become more frequent than the canonical EPW El 
Niño in the late 20th century [Yeh et al., 2009]. This type of El Niño, (also referred to as the 
dateline El Niño [Larkin et al., 2005], El Niño Modoki [Ashok et al., 2009] or warm pool El 
Niño [Kug et al., 2009]) is characterized by a central Pacific warming (CPW) pattern [Kao et 
al., 2009]. The CPW has been linked to changes in tropical cyclone activity [Kim et al., 
2009], storm tracks [Ashok et al., 2009], and shifts in global rainfall patterns [Weng et al., 
2009; Taschetto et al., 2009]. SST anomalies associated with the CPW also modify the 
large-scale atmospheric circulation. However, its signature is different from the EPW (see 
SLPa patterns in Figure 2) in that the center of maximum convection is displaced westward 
with respect to the EPW. Consequently, the CPW is associated with a different pattern of 
atmospheric teleconnections to the extra-tropics [Weng et al., 2009].  

Recent modeling work based on a collaboration between all the PIs [Di Lorenzo et 
al., 2010] suggests that CPW drives variability in the North Pacific atmosphere that is 
integrated to yield the oceanic NPGO pattern. Specifically, maximum CPW anomalies during 
boreal winter excite variability in the atmospheric NPO, which in turn drives the oceanic 
NPGO. This dynamical chain from CPW to NPO to NPGO explains over 75% of the low-
frequency variability of the NPGO, highlighting the strong dynamical links that exist between 
tropical and extratropical climate variability in the Pacific basin.     
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Figure 2: Canonical and Non-Canonical El Niño. Top row shows the timeseries of the canonical 
eastern Pacific warming (EPW) El Niño and non-canonical central Pacific warming (CPW) El Niño. 
The definitions of EPW and CPW follow Ashok et al., [2007]. Bottom rows show correlation maps of 
EPW and CPW winter (JFM averages) values with SLPa and SSTa. 

 
The discovery of this new dynamical link between the CPWNPONPGO reshapes 

our physical understanding of how tropical Pacific climate is coupled to the extra-tropics in 
that it provides the basis for a potential positive feedback between tropics and extra-tropics. 
Support for a dynamical feedback comes from past studies of the PIs on the Seasonal 
Footprinting Mechanism (SFM; [Vimont et al., 2003; Anderson et al., 2003]) whereby boreal 
winter-time variability in the NPO drives warm SST anomalies in the North Pacific that 
propagate into the central tropical Pacific by end of spring/summer through the 
wind/evaporation/SST (WES) feedback. This central Pacific warm anomaly weakens the 
Walker Cell and initiates an ENSO response in the tropics that peaks in the following winter 
[Alexander et al., 2009]. The ENSO response can be both of the EPW and CPW types. If the 
response is a CPW event this implies a positive feedback whereby NPO(winter)CPW(next 
winter)NPO(next winter). This feedback may provide a longer year-to-year persistence of 
the central Pacific warming in the tropics, which could explain why the CPW Index (Figure2) 
has a longer decorrelation timescale and predictability [Kim et al., 2009] than the EPW 
Index. 
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A proposed Framework of Pacific Climate Variability 
Based on these results we propose a synthesized understanding of Pacific low-

frequency variability and the links between the ocean/atmospheric modes of the Pacific via 
the schematic presented in Figure 3. In this schematic there are two sets of dominant 
dynamics -- the EPW/PDO (red path) and CPW/NPGO (blue path), which are physically 
linked and connected through the ENSO system in the tropics. Both the PDO and NPGO are 
to first order the oceanic expressions of the atmospheric forcing associated with the AL and 
NPO variability, respectively, and therefore integrate the low-frequency variations of the 
EPW and CPW through atmospheric teleconnections from EPWALPDO [Alexander, 
1992; Alexander et al., 2002; Newman et al., 2003] and CPWNPONPGO [Di Lorenzo et 
al., 2010]. A link also exists from the extra-tropics back to the tropics through the SFM by 
which NPOCPW/EPW [Vimont et al., 2003; Anderson et al., 2003], giving rise to the 
potential for a feedback between tropics and extra-tropics along the path 
NPOCPWNPO.  

 

 
 

Figure 3: Framework of Pacific Climate Variability. This schematic shows the links between the 
ocean and atmospheric modes of low-frequency variability in the Pacific (see section Framework of 
Pacific Climate Variability for a detailed description). 

 
While the AL and NPO atmospheric forcings have maximum loading in the central 

and eastern North Pacific, their forcing also drives prominent decadal variations in the 
western North Pacific. Specifically, the oceanic adjustment to the SSHa anomalies of the 
AL/PDO and NPO/NPGO radiate Rossby waves that propagate into the western boundary. 
The arrival of the AL/PDO SSHa is associated with changes in the axis of the KOE  [Miller 
and Schneider, 2000; Qiu et al., 2007], while the arrival of the NPO/NPGO SSHa modulates 
variations in the speed of the KOE [Ceballos et al., 2009]. These two modes of KOE 
variability – the KOE meridional mode (shift in axis) and the KOE Zonal mode (change in 
speed) – have been shown to capture the first two dominant modes of variability of SSHa in 
the KOE [Taguchi et al., 2007]. 
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Pacific climate variability and anthropogenic climate change 
While no study has yet focused on the response of Pacific decadal-scale variability to 

anthropogenic forcing, many previous studies investigate the response of ENSO to 
anthropogenic climate change. Early work based on analyses of observational climate data 
and long model simulations highlights the difficulty of isolating statistically significant 
changes in ENSO amplitudes and/or frequencies from the relatively short instrumental 
record [e.g. Trenberth and Hurrell, 1995; Rajagopalan et al., 1997; Wunsch, 1999, 
Wittenberg, 2009]. Nonetheless, a recent study based on analysis of IPCC AR4 projections 
of 21st century ENSO suggests that it is the flavor of ENSO that will change (towards more 
CPW and fewer EPW events) rather than the amplitude or frequency of ENSO variability 
(Yeh et al., 2009).  

Given the links between CPW and the NPGO uncovered by the PIs, an 
anthropogenic shift towards CPW-ENSO at the expense of EPW-ENSO has profound 
implications for the evolution of Pacific decadal-scale variability under continued greenhouse 
forcing. If the IPCC model projections of CPW-ENSO are accurate, then our work suggests 
that NPGO variance will increase during the 21st century, at the expense of PDO variance. 
This hypothesis finds preliminary support in recent studies showing that the NPGO explains 
a higher fraction of North Pacific low-frequency variance over the late 20th century than the 
PDO [Di Lorenzo et al., 2008; Bond et al., 2003; Cummins and Freeland, 2007; Cloern et al., 
personal communication; and other authors]. This shift in variance from PDONPGO is 
consistent with the shift in variance from EPWCPW and may be an early sign of climate 
change impacts on Pacific decadal variability. Such a trend would likely shape weather, 
climate, and ecosystem responses to climate change throughout much of the Northern 
Hemisphere, particularly North America. 

The preceding discussions and the conceptual framework of Pacific low-frequency of 
Figure 3 (see previous section) present an improved understanding of Pacific climate 
variability that expands beyond ENSO/PDO to include the PIʼs work on CPW/NPO/NPGO, 
and motivates an investigation into the evolution of Pacific low-frequency climate variability 
under continued anthropogenic forcing, using both observations and models. 
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