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the presence of substantial motions2. Looking back, we note that the main reason behind this

reduction is the strong geometric disparity of geophysical flows (H ! L).

In rare instances when this disparity between horizontal and vertical scales does not exist,

such as in convection plumes and short internal waves, the hydrostatic approximation ceases

to hold and the vertical-momentum balance includes a three-way balance between vertical

acceleration, pressure gradient and buoyancy.

4.4 Recapitulation of equations governing geophysical flows

The Boussinesq approximation performed in the previous chapter and the preceding devel-

opments have greatly simplified the equations. We recapitulate them here.
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z −momentum: 0 = −
∂p

∂z
− ρg (4.21c)

continuity:
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, (4.21e)

where the reference density ρ0 and the gravitational acceleration g are constant coefficients,
the Coriolis parameter f = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE and κE may taken as constants or functions

of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
called primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations

2According to Nebeker (1995, page 51), the scientist deserving credit for the hydrostatic balance in geophysical

flows is Alexis Clairaut (1713–1765).

Primitive Equations describing motions of geophysical flows
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These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section 4.3 was developed to justify the neglect of some small terms.

But this does not necessarily imply that the remaining terms are equally large. We now wish

to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their last form (4.21a) and (4.21b)

scale sequentially as

U

T
,

U2

L
,

U2

L
,

WU

H
, ΩU ,

P

ρ0L
,

AU

L2
,

νEU

H2
.

By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-

tant factor. Thus, the term ΩU is central to the preceding sequence. A division by ΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following

sequence of dimensionless ratios:

1

ΩT
,

U

ΩL
,

U

ΩL
,

WL

UH
·

U

ΩL
, 1 ,

P

ρ0ΩLU
,

A

ΩL2
,
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ΩH2
.

The first ratio,

RoT =
1

ΩT
, (4.23)

is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,

Scaling of terms

divide by 
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(4.11)]. The next number,

inertial terms rotation frictional forces

4.5. DIMENSIONLESS NUMBERS 99

can be written in conservative form:

∂u

∂t
+

∂(uu)

∂x
+

∂(vu)

∂y
+

∂(wu)

∂z
− fv =

−
1

ρ0

∂p

∂x
+

∂

∂x

(

A
∂u

∂x

)

+
∂

∂y

(

A
∂u

∂y

)

+
∂

∂z

(

νE
∂u

∂z

)

(4.22a)

∂v

∂t
+

∂(uv)

∂x
+

∂(vv)

∂y
+

∂(wv)

∂z
+ fu =

−
1

ρ0

∂p

∂y
+

∂

∂x

(

A
∂v

∂x

)

+
∂

∂y

(

A
∂v

∂y

)

+
∂

∂z

(

νE
∂v

∂z

)

(4.22b)

∂ρ

∂t
+

∂(uρ)

∂x
+

∂(vρ)

∂y
+

∂(wρ)

∂z
=

∂

∂x

(

A
∂ρ

∂x

)

+
∂

∂y

(

A
∂ρ

∂y

)

+
∂

∂z

(

κE
∂ρ

∂z

)

, (4.22c)

These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section 4.3 was developed to justify the neglect of some small terms.

But this does not necessarily imply that the remaining terms are equally large. We now wish

to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their last form (4.21a) and (4.21b)

scale sequentially as

U

T
,

U2

L
,

U2

L
,

WU

H
, ΩU ,

P

ρ0L
,

AU

L2
,

νEU

H2
.

By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-

tant factor. Thus, the term ΩU is central to the preceding sequence. A division by ΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following

sequence of dimensionless ratios:

1

ΩT
,

U

ΩL
,

U

ΩL
,

WL

UH
·

U

ΩL
, 1 ,

P

ρ0ΩLU
,

A

ΩL2
,

νE

ΩH2
.

The first ratio,

RoT =
1

ΩT
, (4.23)

is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,



4.5. DIMENSIONLESS NUMBERS 99

can be written in conservative form:

∂u

∂t
+

∂(uu)

∂x
+

∂(vu)

∂y
+

∂(wu)

∂z
− fv =

−
1

ρ0

∂p

∂x
+

∂

∂x

(

A
∂u

∂x

)

+
∂

∂y

(

A
∂u

∂y

)

+
∂

∂z

(

νE
∂u

∂z

)

(4.22a)

∂v

∂t
+

∂(uv)

∂x
+

∂(vv)

∂y
+

∂(wv)

∂z
+ fu =

−
1

ρ0

∂p

∂y
+

∂

∂x

(

A
∂v

∂x

)

+
∂

∂y

(

A
∂v

∂y

)

+
∂

∂z

(

νE
∂v

∂z

)

(4.22b)

∂ρ

∂t
+

∂(uρ)

∂x
+

∂(vρ)

∂y
+

∂(wρ)

∂z
=

∂

∂x

(

A
∂ρ

∂x

)

+
∂

∂y

(

A
∂ρ

∂y

)

+
∂

∂z

(

κE
∂ρ

∂z

)

, (4.22c)

These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section 4.3 was developed to justify the neglect of some small terms.

But this does not necessarily imply that the remaining terms are equally large. We now wish

to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their last form (4.21a) and (4.21b)

scale sequentially as

U

T
,

U2

L
,

U2

L
,

WU

H
, ΩU ,

P

ρ0L
,

AU

L2
,

νEU

H2
.

By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-

tant factor. Thus, the term ΩU is central to the preceding sequence. A division by ΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following

sequence of dimensionless ratios:

1

ΩT
,

U

ΩL
,

U

ΩL
,

WL

UH
·

U

ΩL
, 1 ,

P

ρ0ΩLU
,

A

ΩL2
,

νE

ΩH2
.

The first ratio,

RoT =
1

ΩT
, (4.23)

is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,

inertial terms rotation frictional forces

Important Dimensionless Numbers

measuring the sizes of the terms in the equations

100 CHAPTER 4. EQUATIONS

Ro =
U

ΩL
, (4.24)

which compares advection to Coriolis force, is called the Rossby number 3 and is fundamental

in geophysical fluid dynamics. Like its temporal analogue RoT , it is at most on the order of

unity by virtue of (4.12). As a general rule, the characteristics of geophysical flows vary

greatly with the values of the Rossby numbers.

The next number is the product of the Rossby number byWL/UH , which is on the order
of one or less by virtue of (4.14). It will be shown in Section 11.5 that the ratioWL/UH is

generally on the order of the Rossby number itself. The next ratio, P/ρ0ΩLU , is on the order
of unity by virtue of (4.16).

The last two ratios measure the relative importance of horizontal and vertical friction. Of

the two, only the latter bears a name:

Ek =
νE

ΩH2
, (4.25)

is called the Ekman number. For geophysical flows, this number is small. For example,

with an eddy viscosity νE as large as 10−2 m2/s, Ω = 7.3 × 10−5 s−1 and H = 100 m,

Ek = 1.4 × 10−2. The Ekman number is even smaller in laboratory experiments where the

viscosity reverts to its molecular value and the height scaleH is much more modest. [Typical

experimental values are Ω = 4 s−1, H = 20 cm, and ν(water) = 10−6 m2/s, yielding Ek = 6
× 10−6.] Although the Ekman number is small, indicating that the dissipative terms in the

momentum equation may be negligible, these need to be retained. The reason will become

clear in Chapter 8, when it is shown that vertical friction creates a very important boundary

layer.

In nonrotating fluid dynamics, it is customary to compare inertial and frictional forces

by defining the Reynolds number, Re. In the preceding scaling, inertial and frictional forces
were not compared to each other but each was instead compared to the Coriolis force, yielding

the Rossby and Ekman numbers, respectively. There exists a simple relationship between the

three numbers and the aspect ratioH/L:

Re =
UL

νE
=

U

ΩL
·

ΩH2

νE
·

L2

H2
=

Ro

Ek

(

L

H

)2

. (4.26)

Since the Rossby number is on the order of unity or slightly less, but the Ekman number and

the aspect ratioH/L are both much smaller than unity, the Reynolds number of geophysical
flows is extremely large, even after the molecular viscosity has been replaced by a much

larger eddy viscosity.

With (4.16), the two terms in the hydrostatic equation (4.21c) scale respectively as

P

H
, g∆ρ

and the ratio of the latter over the former is

gH∆ρ

P
=

gH∆ρ

ρ0ΩLU
=

U

ΩL
·

gH∆ρ

ρ0U2
= Ro ·

gH∆ρ

ρ0U2
.

3See biographic note at the end of this chapter.

Rossby Number
advection/rotation
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Table 4.1 TYPICAL SCALES OF ATMOSPHERIC AND OCEANIC FLOWS

Variable Scale Unit Atmospheric value Oceanic value

x, y L m 100 km = 105 m 10 km = 104 m

z H m 1 km = 103 m 100 m = 102 m

t T s ≥ 1
2
day " 4 × 104 s ≥ 1 day " 9 × 104 s

u, v U m/s 10 m/s 0.1 m/s

w W m/s

variablep P kg/(m·s2)
ρ ∆ρ kg/m3

4.3 Scales of motion

Simplifications of the equations established in the preceding section are possible beyond the

Boussinesq approximation and averaging over turbulent fluctuations. However, these require

a preliminary discussion of orders of magnitude. Accordingly, let us introduce a scale for

every variable, as we already did in a limited way in 1.10. By scale, we mean a dimensional

constant of dimensions identical to that of the variable and having a numerical value repre-

sentative of the values of that same variable. Table 4.1 provides illustrative scales for the

variables of interest in geophysical fluid flow. Obviously, scale values do vary with every

application, and the values listed in Table 4.1 are only suggestive. Even so, the conclusions

drawn from the use of these particular values stand in the vast majority of cases. If doubt

arises in a specific situation, the following scale analysis can always be redone.

In the construction of Table 4.1, we were careful to satisfy the criteria of geophysical fluid

dynamics outlined in Sections 1.5 and 1.6,

T !
1

Ω
, (4.11)

for the time scale and

U

L
" Ω, (4.12)

for the velocity and length scales. It is generally not required to discriminate between the

two horizontal directions, and we assign the same length scale L to both coordinates and the
same velocity scale U to both velocity components. The same, however, cannot be said of the

vertical direction. Geophysical flows are typically confined to domains that are much wider

than they are thick, and the aspect ratioH/L is small. The atmospheric layer that determines
our weather is only about 10 km thick, yet cyclones and anticyclones spread over thousands

of kilometers. Similarly, ocean currents are generally confined to the upper hundred meters

of the water column but extend over tens of kilometers or more, up to the width of the ocean

basin. It follows that for large-scale motions
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Table 4.1 TYPICAL SCALES OF ATMOSPHERIC AND OCEANIC FLOWS

Variable Scale Unit Atmospheric value Oceanic value

x, y L m 100 km = 105 m 10 km = 104 m

z H m 1 km = 103 m 100 m = 102 m

t T s ≥ 1
2
day " 4 × 104 s ≥ 1 day " 9 × 104 s

u, v U m/s 10 m/s 0.1 m/s

w W m/s

variablep P kg/(m·s2)
ρ ∆ρ kg/m3

4.3 Scales of motion
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T !
1

Ω
, (4.11)

for the time scale and

U

L
" Ω, (4.12)

for the velocity and length scales. It is generally not required to discriminate between the
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same velocity scale U to both velocity components. The same, however, cannot be said of the
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our weather is only about 10 km thick, yet cyclones and anticyclones spread over thousands

of kilometers. Similarly, ocean currents are generally confined to the upper hundred meters

of the water column but extend over tens of kilometers or more, up to the width of the ocean

basin. It follows that for large-scale motions
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problems. As we mentioned earlier, geophysical fluids generally exhibit a certain degree of

density heterogeneity, called stratification. The important parameters are then the average

density ρ0, the range of density variations ∆ρ, and the height H over which such density

variations occur. In the ocean, the weak compressibility of water under changes of pressure,

temperature, and salinity translates into values of∆ρ always much less than ρ0, whereas the

compressibility of air renders the selection of ∆ρ in atmospheric flows somewhat delicate.
Since geophysical flows are generally bounded in the vertical direction, the total depth of the

fluid may be substituted for the height scale H . Usually, the smaller of the two height scales
is selected.

As an example, the density and height scales in the dead-water problem (Figure 1-4) can

be chosen as follows: ρ0 = 1025 kg/m
3, the density of either fluid layer (almost the same);

∆ρ = 1 kg/m3, the density difference between lower and upper layers (much smaller than

ρ0); andH = 5 m, the depth of the upper layer.

As the person new to geophysical fluid dynamics has already realized, the selection of

scales for any given problem is more an art than a science. Choices are rather subjective. The

trick is to choose quantities that are relevant to the problem, yet simple to establish. There

is freedom. Fortunately, small inaccuracies are inconsequential because the scales are meant

only to guide in the clarification of the problem, whereas grossly inappropriate scales will

usually lead to flagrant contradictions. Practice, which forms intuition, is necessary to build

confidence.

1.5 Importance of rotation

Naturally, we may wonder at which scales the ambient rotation becomes an important factor

in controlling the fluid motions. To answer this question, we must first know the ambient

rotation rate, which we denote by Ω and define as:

Ω =
2π radians

time of one revolution
. (1.1)

Since our planet Earth actually rotates in two ways simultaneously, once per day about itself

and once a year around the sun, the terrestrial value of Ω consists of two terms, 2π/24 hours
+ 2π/365.24 days = 2π/1 sidereal day = 7.2921 × 10−5 s−1. The sidereal day, equal to 23

hours 56 minutes and 4.1 seconds, is the period of time spanning the moment when a fixed

(distant) star is seen one day and the moment on the next day when it is seen at the same

angle from the same point on Earth. It is slightly shorter than the 24–hour solar day, the time

elapsed between the sun reaching its highest point in the sky two consecutive times, because

the earth’s orbital motion about the sun makes the earth rotate slightly more than one full turn

with respect to distant stars before reaching the same Earth-Sun orientation.

If fluid motions evolve on a time scale comparable to or longer than the time of one

rotation, we anticipate that the fluid does feel the effect of the ambient rotation. We thus

define the dimensionless quantity

ω =
time of one revolution

motion time scale
=

2π/Ω

T
=

2π

ΩT
, (1.2)
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can be written in conservative form:
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∂t
+

∂(uu)

∂x
+

∂(vu)

∂y
+

∂(wu)

∂z
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∂
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A
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(
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∂z
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These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section 4.3 was developed to justify the neglect of some small terms.

But this does not necessarily imply that the remaining terms are equally large. We now wish

to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their last form (4.21a) and (4.21b)

scale sequentially as

U

T
,

U2

L
,

U2

L
,

WU

H
, ΩU ,

P

ρ0L
,

AU

L2
,

νEU

H2
.

By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-

tant factor. Thus, the term ΩU is central to the preceding sequence. A division by ΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following

sequence of dimensionless ratios:

1

ΩT
,

U

ΩL
,

U

ΩL
,

WL

UH
·

U

ΩL
, 1 ,

P

ρ0ΩLU
,

A

ΩL2
,

νE

ΩH2
.

The first ratio,

RoT =
1

ΩT
, (4.23)

is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,

inertial terms rotation frictional forces

high = turbulent flows
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Ro =
U

ΩL
, (4.24)

which compares advection to Coriolis force, is called the Rossby number 3 and is fundamental

in geophysical fluid dynamics. Like its temporal analogue RoT , it is at most on the order of

unity by virtue of (4.12). As a general rule, the characteristics of geophysical flows vary

greatly with the values of the Rossby numbers.

The next number is the product of the Rossby number byWL/UH , which is on the order
of one or less by virtue of (4.14). It will be shown in Section 11.5 that the ratioWL/UH is

generally on the order of the Rossby number itself. The next ratio, P/ρ0ΩLU , is on the order
of unity by virtue of (4.16).

The last two ratios measure the relative importance of horizontal and vertical friction. Of

the two, only the latter bears a name:

Ek =
νE

ΩH2
, (4.25)

is called the Ekman number. For geophysical flows, this number is small. For example,

with an eddy viscosity νE as large as 10−2 m2/s, Ω = 7.3 × 10−5 s−1 and H = 100 m,

Ek = 1.4 × 10−2. The Ekman number is even smaller in laboratory experiments where the

viscosity reverts to its molecular value and the height scaleH is much more modest. [Typical

experimental values are Ω = 4 s−1, H = 20 cm, and ν(water) = 10−6 m2/s, yielding Ek = 6
× 10−6.] Although the Ekman number is small, indicating that the dissipative terms in the

momentum equation may be negligible, these need to be retained. The reason will become

clear in Chapter 8, when it is shown that vertical friction creates a very important boundary

layer.

In nonrotating fluid dynamics, it is customary to compare inertial and frictional forces

by defining the Reynolds number, Re. In the preceding scaling, inertial and frictional forces
were not compared to each other but each was instead compared to the Coriolis force, yielding

the Rossby and Ekman numbers, respectively. There exists a simple relationship between the

three numbers and the aspect ratioH/L:

Re =
UL

νE
=

U

ΩL
·

ΩH2

νE
·

L2

H2
=

Ro

Ek

(

L

H

)2

. (4.26)

Since the Rossby number is on the order of unity or slightly less, but the Ekman number and

the aspect ratioH/L are both much smaller than unity, the Reynolds number of geophysical
flows is extremely large, even after the molecular viscosity has been replaced by a much

larger eddy viscosity.

With (4.16), the two terms in the hydrostatic equation (4.21c) scale respectively as

P

H
, g∆ρ

and the ratio of the latter over the former is

gH∆ρ

P
=

gH∆ρ

ρ0ΩLU
=

U

ΩL
·

gH∆ρ

ρ0U2
= Ro ·

gH∆ρ

ρ0U2
.

3See biographic note at the end of this chapter.

Reynolds Number
inertial forces/frictional forces

3
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This leads to the additional dimensionless ratio

Ri =
gH∆ρ

ρ0U2
, (4.27)

which we already encountered in Section 1.6. It is called the Richardson number4. For

geophysical flows, this number may be much less than, on the order of, or much greater than

unity, depending on whether stratification effects are negligible, important or dominant.

4.6 Boundary conditions

The equations of section 4.4 governing geophysical flows form a closed set of equations,

with the number of unknown functions being equal to the number of available independent

equations. However, the solution of those equations is uniquely defined only when additional

specifications are provided. Those auxiliary conditions concern information on the initial

state and geographical boundaries of the system (Figure 4-1).

!

"#

$%

&'

Figure 4-1 Schematic representation of possible exchanges between the system under investigation

and the surrounding environment. Boundary conditions must specify the influence of this outside world

on the evolution within the domain. Exchanges may take place at the air-sea interface, in bottom layers,

along coasts and/or at any other boundary of the domain.

Because the governing equations (4.21) contain first-order time derivatives of u, v and ρ,
initial conditions are required, one for each of these three-dimensional fields. Because the

respective equations, (4.21a), (4.21b) and (4.21e), provide tendencies for these variables in

order to calculate future values, it is necessary to specify from where to start. The variables

4See biography at the end of Chapter 14

Available Potential Energy (APE)

Kinetic Energy (KE)

Richardson Number4
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These will be found useful in numerical discretization.
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is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,

inertial terms rotation frictional forces
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the presence of substantial motions2. Looking back, we note that the main reason behind this

reduction is the strong geometric disparity of geophysical flows (H ! L).

In rare instances when this disparity between horizontal and vertical scales does not exist,

such as in convection plumes and short internal waves, the hydrostatic approximation ceases

to hold and the vertical-momentum balance includes a three-way balance between vertical

acceleration, pressure gradient and buoyancy.

4.4 Recapitulation of equations governing geophysical flows

The Boussinesq approximation performed in the previous chapter and the preceding devel-

opments have greatly simplified the equations. We recapitulate them here.
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z −momentum: 0 = −
∂p

∂z
− ρg (4.21c)

continuity:
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, (4.21e)

where the reference density ρ0 and the gravitational acceleration g are constant coefficients,
the Coriolis parameter f = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE and κE may taken as constants or functions

of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
called primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations

2According to Nebeker (1995, page 51), the scientist deserving credit for the hydrostatic balance in geophysical

flows is Alexis Clairaut (1713–1765).
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Chapter 7

Geostrophic Flows and Vorticity

Dynamics

(July 26, 2007) SUMMARY: This chapter treats homogeneous flows with small Rossby and

Ekman numbers. It is shown that such flows have a tendency to display vertical rigidity.

The concept of potential vorticity is then introduced. The solution of vertically homoge-

neous flows often involves a Poisson equation for the pressure distribution, and numerical

techniques are presented to accomplish this.

7.1 Homogeneous geostrophic flows

Let us consider rapidly rotating fluids by restricting our attention to situations where the Cori-

olis acceleration strongly dominates the various acceleration terms. Let us further consider

homogeneous fluids and ignore frictional effects, by assuming

RoT ! 1, Ro ! 1, Ek ! 1, (7.1)

together with ρ = 0 (no density variation). The lowest-order equations governing such homo-
geneous, frictionless, rapidly rotating fluids are the following simplified forms of equations

of motion, (4.21):

− fv = −
1
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∂x
(7.2)

+fu = −
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(7.3)
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(7.4)

∂u
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+

∂v

∂y
+

∂w

∂z
= 0, (7.5)
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where the reference density ρ0 and the gravitational acceleration g are constant coefficients,
the Coriolis parameter f = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE and κE may taken as constants or functions

of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
called primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations
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the presence of substantial motions2. Looking back, we note that the main reason behind this

reduction is the strong geometric disparity of geophysical flows (H ! L).

In rare instances when this disparity between horizontal and vertical scales does not exist,

such as in convection plumes and short internal waves, the hydrostatic approximation ceases

to hold and the vertical-momentum balance includes a three-way balance between vertical

acceleration, pressure gradient and buoyancy.

4.4 Recapitulation of equations governing geophysical flows

The Boussinesq approximation performed in the previous chapter and the preceding devel-

opments have greatly simplified the equations. We recapitulate them here.
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of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
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neous flows often involves a Poisson equation for the pressure distribution, and numerical

techniques are presented to accomplish this.

7.1 Homogeneous geostrophic flows

Let us consider rapidly rotating fluids by restricting our attention to situations where the Cori-

olis acceleration strongly dominates the various acceleration terms. Let us further consider

homogeneous fluids and ignore frictional effects, by assuming

RoT ! 1, Ro ! 1, Ek ! 1, (7.1)

together with ρ = 0 (no density variation). The lowest-order equations governing such homo-
geneous, frictionless, rapidly rotating fluids are the following simplified forms of equations

of motion, (4.21):
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where f is the Coriolis parameter.
This reduced set of equations has a number of surprising properties. First, if we take the

vertical derivative of the first equation, (7.2), we obtain, successively,
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(
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= −
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(
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∂z

)

= 0,

where the right-hand side vanishes because of (7.4). The other horizontal momentum equa-

tion, (7.3), succumbs to the same fate, bringing us to conclude that the vertical derivative of

the horizontal velocity must be identically zero:

∂u

∂z
=

∂v

∂z
= 0. (7.6)

This result is known as the Taylor–Proudman theorem ( Taylor, 1923; Proudman, 1953).

Physically, it means that the horizontal velocity field has no vertical shear and that all particles

on the same vertical move in concert. Such vertical rigidity is a fundamental property of

rotating homogeneous fluids.

Next, let us solve the momentum equations in terms of the velocity components, a trivial

task:

u =
−1

ρ0f

∂p

∂y
, v =

+1

ρ0f

∂p

∂x
, (7.7)

with the corollary that the vector velocity (u, v) is perpendicular to the vector (∂p/∂x,
∂p/∂y). Since the latter vector is none other than the pressure gradient, we conclude that
the flow is not down-gradient but rather across-gradient. The fluid particles are not cascading

from high to low pressures, as they would in a nonrotating viscous flow but, instead, are nav-

igating along lines of constant pressure, called isobars (Figure 7-1). The flow is said to be

isobaric, and isobars are streamlines. It also implies that no pressure work is performed either

on the fluid or by the fluid. Hence, once initiated, the flow can persist without a continuous

source of energy.

High

Low

u ∇p

.......
......
.....
......
......
......
..........
....................................................................

f
2p = p1

p = p2 > p1

Low

Figure 7-1 Example of geostrophic

flow. The velocity vector is everywhere

parallel to the lines of equal pressure.

Thus, pressure contours act as stream-

lines. In the Northern Hemisphere (as

pictured here), the fluid circulates with

the high pressure on its right. The op-

posite holds for the Southern Hemi-

sphere.

Such a flow field, where a balance is struck between the Coriolis and pressure forces,

is called geostrophic (from the Greek, γη = Earth and στρoϕη = turning). The property is
called geostrophy. Hence, by definition, all geostrophic flows are isobaric.

geostrophic flows follow lines of constant pressure = isobars
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igating along lines of constant pressure, called isobars (Figure 7-1). The flow is said to be

isobaric, and isobars are streamlines. It also implies that no pressure work is performed either

on the fluid or by the fluid. Hence, once initiated, the flow can persist without a continuous

source of energy.
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is called geostrophic (from the Greek, γη = Earth and στρoϕη = turning). The property is
called geostrophy. Hence, by definition, all geostrophic flows are isobaric.
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This result is known as the Taylor–Proudman theorem ( Taylor, 1923; Proudman, 1953).
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Chapter 7

Geostrophic Flows and Vorticity

Dynamics

(July 26, 2007) SUMMARY: This chapter treats homogeneous flows with small Rossby and

Ekman numbers. It is shown that such flows have a tendency to display vertical rigidity.

The concept of potential vorticity is then introduced. The solution of vertically homoge-

neous flows often involves a Poisson equation for the pressure distribution, and numerical

techniques are presented to accomplish this.

7.1 Homogeneous geostrophic flows

Let us consider rapidly rotating fluids by restricting our attention to situations where the Cori-

olis acceleration strongly dominates the various acceleration terms. Let us further consider

homogeneous fluids and ignore frictional effects, by assuming

RoT ! 1, Ro ! 1, Ek ! 1, (7.1)

together with ρ = 0 (no density variation). The lowest-order equations governing such homo-
geneous, frictionless, rapidly rotating fluids are the following simplified forms of equations

of motion, (4.21):

− fv = −
1

ρ0

∂p

∂x
(7.2)

+fu = −
1

ρ0

∂p

∂y
(7.3)

0 = −
1

ρ0

∂p

∂z
(7.4)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (7.5)
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A remaining question concerns the direction of flow along pressure lines. A quick ex-

amination of the signs in expressions (7.7) reveals that, where f is positive (Northern Hemi-
sphere, counterclockwise ambient rotation), the currents/winds flow with the high pressures

on their right. Where f is negative (Southern Hemisphere, clockwise ambient rotation), they
flow with the high pressures on their left. Physically, the pressure force is directed from the

high pressure toward the low pressure initiating a flow in that direction, but on the rotating

planet, this flow is deflected to the right (left) in the Northern (Southern) Hemisphere. Figure

7-2 provides a meteorological example from the Northern Hemisphere.

If the flow field extends over a meridional span that is not too wide, the variation of the

Coriolis parameter with latitude is negligible, and f can be taken as a constant. The frame of
reference is then called the f-plane. In this case, the horizontal divergence of the geostrophic

flow vanishes:

∂u

∂x
+

∂v

∂y
= −

∂

∂x

(
1

ρ0f

∂p

∂y

)

+
∂

∂y

(
1

ρ0f

∂p

∂x

)

= 0. (7.8)

Hence, geostrophic flows are naturally nondivergent on the f-plane. This leaves no room for

vertical convergence or divergence, as the continuity equation (7.5) implies:

∂w

∂z
= 0. (7.9)

A corollary is that the vertical velocity, too, is independent of height. If the fluid is limited

in the vertical by a flat bottom (horizontal ground or sea for the atmosphere) or by a flat lid

(sea surface for the ocean), this vertical velocity must simply vanish, and the flow is strictly

two-dimensional.

7.2 Homogeneous geostrophic flows over an irregular bot-

tom

Let us still consider a rapidly rotating fluid, so that the flow is geostrophic, but now over an

irregular bottom. We neglect the possible surface displacements, assuming that they remain

modest in comparison with the bottom irregularities (Figure 7-3). An example would be the

flow in a shallow sea (homogeneous waters) with depth ranging from 20 to 50 m and under

surface waves a few centimeters high.

As shown in the development of kinematic boundary conditions (4.28), if the flow were to

climb up or down the bottom, it would undergo a vertical velocity proportional to the slope:

w = u
∂b

∂x
+ v

∂b

∂y
, (7.10)

where b is the bottom elevation above the reference level. The analysis of the previous section
implies that the vertical velocity is constant across the entire depth of the fluid. Since it must

be zero at the top, it must be so at the bottom as well; that is,

u
∂b

∂x
+ v

∂b

∂y
= 0, (7.11)

if

non-divergent
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where f is the Coriolis parameter.
This reduced set of equations has a number of surprising properties. First, if we take the

vertical derivative of the first equation, (7.2), we obtain, successively,
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ρ0

∂

∂z

(
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)

= −
1
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= 0,

where the right-hand side vanishes because of (7.4). The other horizontal momentum equa-

tion, (7.3), succumbs to the same fate, bringing us to conclude that the vertical derivative of

the horizontal velocity must be identically zero:

∂u

∂z
=

∂v

∂z
= 0. (7.6)

This result is known as the Taylor–Proudman theorem ( Taylor, 1923; Proudman, 1953).

Physically, it means that the horizontal velocity field has no vertical shear and that all particles

on the same vertical move in concert. Such vertical rigidity is a fundamental property of

rotating homogeneous fluids.

Next, let us solve the momentum equations in terms of the velocity components, a trivial

task:

u =
−1

ρ0f

∂p

∂y
, v =

+1

ρ0f

∂p

∂x
, (7.7)

with the corollary that the vector velocity (u, v) is perpendicular to the vector (∂p/∂x,
∂p/∂y). Since the latter vector is none other than the pressure gradient, we conclude that
the flow is not down-gradient but rather across-gradient. The fluid particles are not cascading

from high to low pressures, as they would in a nonrotating viscous flow but, instead, are nav-

igating along lines of constant pressure, called isobars (Figure 7-1). The flow is said to be

isobaric, and isobars are streamlines. It also implies that no pressure work is performed either

on the fluid or by the fluid. Hence, once initiated, the flow can persist without a continuous

source of energy.
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Figure 7-1 Example of geostrophic

flow. The velocity vector is everywhere

parallel to the lines of equal pressure.

Thus, pressure contours act as stream-

lines. In the Northern Hemisphere (as

pictured here), the fluid circulates with

the high pressure on its right. The op-

posite holds for the Southern Hemi-

sphere.

Such a flow field, where a balance is struck between the Coriolis and pressure forces,

is called geostrophic (from the Greek, γη = Earth and στρoϕη = turning). The property is
called geostrophy. Hence, by definition, all geostrophic flows are isobaric.
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The concept of potential vorticity is then introduced. The solution of vertically homoge-

neous flows often involves a Poisson equation for the pressure distribution, and numerical

techniques are presented to accomplish this.
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Let us consider rapidly rotating fluids by restricting our attention to situations where the Cori-

olis acceleration strongly dominates the various acceleration terms. Let us further consider

homogeneous fluids and ignore frictional effects, by assuming

RoT ! 1, Ro ! 1, Ek ! 1, (7.1)

together with ρ = 0 (no density variation). The lowest-order equations governing such homo-
geneous, frictionless, rapidly rotating fluids are the following simplified forms of equations

of motion, (4.21):
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Hence, geostrophic flows are naturally nondivergent on the f-plane. This leaves no room for
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A corollary is that the vertical velocity, too, is independent of height. If the fluid is limited
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(sea surface for the ocean), this vertical velocity must simply vanish, and the flow is strictly

two-dimensional.
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implies that the vertical velocity is constant across the entire depth of the fluid. Since it must
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where f is the Coriolis parameter.
This reduced set of equations has a number of surprising properties. First, if we take the

vertical derivative of the first equation, (7.2), we obtain, successively,

−f
∂v

∂z
= −

1

ρ0

∂

∂z

(
∂p

∂x

)

= −
1

ρ0

∂

∂x

(
∂p

∂z

)

= 0,

where the right-hand side vanishes because of (7.4). The other horizontal momentum equa-

tion, (7.3), succumbs to the same fate, bringing us to conclude that the vertical derivative of

the horizontal velocity must be identically zero:

∂u

∂z
=

∂v

∂z
= 0. (7.6)

This result is known as the Taylor–Proudman theorem ( Taylor, 1923; Proudman, 1953).

Physically, it means that the horizontal velocity field has no vertical shear and that all particles

on the same vertical move in concert. Such vertical rigidity is a fundamental property of

rotating homogeneous fluids.

Next, let us solve the momentum equations in terms of the velocity components, a trivial

task:

u =
−1

ρ0f

∂p

∂y
, v =

+1

ρ0f

∂p

∂x
, (7.7)

with the corollary that the vector velocity (u, v) is perpendicular to the vector (∂p/∂x,
∂p/∂y). Since the latter vector is none other than the pressure gradient, we conclude that
the flow is not down-gradient but rather across-gradient. The fluid particles are not cascading

from high to low pressures, as they would in a nonrotating viscous flow but, instead, are nav-

igating along lines of constant pressure, called isobars (Figure 7-1). The flow is said to be

isobaric, and isobars are streamlines. It also implies that no pressure work is performed either

on the fluid or by the fluid. Hence, once initiated, the flow can persist without a continuous

source of energy.

High

Low

u ∇p

.......
......
.....
......
......
......
..........
....................................................................

f
2p = p1

p = p2 > p1

Low

Figure 7-1 Example of geostrophic

flow. The velocity vector is everywhere

parallel to the lines of equal pressure.

Thus, pressure contours act as stream-

lines. In the Northern Hemisphere (as

pictured here), the fluid circulates with

the high pressure on its right. The op-

posite holds for the Southern Hemi-

sphere.

Such a flow field, where a balance is struck between the Coriolis and pressure forces,

is called geostrophic (from the Greek, γη = Earth and στρoϕη = turning). The property is
called geostrophy. Hence, by definition, all geostrophic flows are isobaric.
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A remaining question concerns the direction of flow along pressure lines. A quick ex-

amination of the signs in expressions (7.7) reveals that, where f is positive (Northern Hemi-
sphere, counterclockwise ambient rotation), the currents/winds flow with the high pressures

on their right. Where f is negative (Southern Hemisphere, clockwise ambient rotation), they
flow with the high pressures on their left. Physically, the pressure force is directed from the

high pressure toward the low pressure initiating a flow in that direction, but on the rotating

planet, this flow is deflected to the right (left) in the Northern (Southern) Hemisphere. Figure

7-2 provides a meteorological example from the Northern Hemisphere.

If the flow field extends over a meridional span that is not too wide, the variation of the

Coriolis parameter with latitude is negligible, and f can be taken as a constant. The frame of
reference is then called the f-plane. In this case, the horizontal divergence of the geostrophic

flow vanishes:

∂u

∂x
+

∂v

∂y
= −

∂

∂x

(
1

ρ0f

∂p

∂y

)

+
∂

∂y

(
1

ρ0f

∂p

∂x

)

= 0. (7.8)

Hence, geostrophic flows are naturally nondivergent on the f-plane. This leaves no room for

vertical convergence or divergence, as the continuity equation (7.5) implies:

∂w

∂z
= 0. (7.9)

A corollary is that the vertical velocity, too, is independent of height. If the fluid is limited

in the vertical by a flat bottom (horizontal ground or sea for the atmosphere) or by a flat lid

(sea surface for the ocean), this vertical velocity must simply vanish, and the flow is strictly

two-dimensional.

7.2 Homogeneous geostrophic flows over an irregular bot-

tom

Let us still consider a rapidly rotating fluid, so that the flow is geostrophic, but now over an

irregular bottom. We neglect the possible surface displacements, assuming that they remain

modest in comparison with the bottom irregularities (Figure 7-3). An example would be the

flow in a shallow sea (homogeneous waters) with depth ranging from 20 to 50 m and under

surface waves a few centimeters high.

As shown in the development of kinematic boundary conditions (4.28), if the flow were to

climb up or down the bottom, it would undergo a vertical velocity proportional to the slope:

w = u
∂b

∂x
+ v

∂b

∂y
, (7.10)

where b is the bottom elevation above the reference level. The analysis of the previous section
implies that the vertical velocity is constant across the entire depth of the fluid. Since it must

be zero at the top, it must be so at the bottom as well; that is,

u
∂b

∂x
+ v

∂b

∂y
= 0, (7.11)
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Figure 7-3 Schematic view of a flow

over a sloping bottom. A vertical ve-

locity must accompany flow across iso-

baths.

and the flow is prevented from climbing up or down the bottom slope. This property has

profound implications. In particular, if the topography consists of an isolated bump (or dip) in

an otherwise flat bottom, the fluid on the flat bottom cannot rise onto the bump, even partially,

but must instead go around it. Because of the vertical rigidity of the flow, the fluid parcels at

all levels – including levels above the bump elevation – must likewise go around. Similarly,

the fluid over the bump cannot leave the bump but must remain there. Such permanent tubes

of fluids trapped above bumps or cavities are called Taylor columns ( Taylor, 1923).

In flat-bottomed regions a geostrophic flow can assume arbitrary patterns, and the actual

pattern reflects the initial conditions. But, over a bottom where the slope is non-zero almost

everywhere (Figure 7-4), the geostrophic flow has no choice but to follow the depth contours

(called isobaths). Pressure contours are then aligned with topographic contours, and isobars

coincide with isobaths. These lines are sometimes also called geostrophic contours. Note

that a relation between pressure and fluid thickness exists but cannot be determined without

additional information on the flow.

Open isobaths that start and end on a side boundary cannot support any flow, otherwise

fluid would be required to enter or leave through lateral boundaries. The flow is simply

blocked along the entire length of these lines. In other words, geostrophic flow can occur

only along closed isobaths.

f
2

No flow
Wall

Figure 7-4 Geostrophic flow in a

closed domain and over irregular to-

pography. Solid lines are isobaths (con-

tours of equal depth). Flow is permitted

only along closed isobaths

The preceding conclusions hold true as long as the upper boundary is horizontal. If this

is not the case, it can then be shown that geostrophic flows are constrained to be directed

along lines of constant fluid depth. (See Analytical Problem 7-3.) Thus, the fluid is allowed

therefore flow is permitted
only along isobaths
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Chapter 7

Geostrophic Flows and Vorticity

Dynamics

(July 26, 2007) SUMMARY: This chapter treats homogeneous flows with small Rossby and

Ekman numbers. It is shown that such flows have a tendency to display vertical rigidity.

The concept of potential vorticity is then introduced. The solution of vertically homoge-

neous flows often involves a Poisson equation for the pressure distribution, and numerical

techniques are presented to accomplish this.

7.1 Homogeneous geostrophic flows

Let us consider rapidly rotating fluids by restricting our attention to situations where the Cori-

olis acceleration strongly dominates the various acceleration terms. Let us further consider

homogeneous fluids and ignore frictional effects, by assuming

RoT ! 1, Ro ! 1, Ek ! 1, (7.1)

together with ρ = 0 (no density variation). The lowest-order equations governing such homo-
geneous, frictionless, rapidly rotating fluids are the following simplified forms of equations

of motion, (4.21):

− fv = −
1

ρ0

∂p

∂x
(7.2)

+fu = −
1

ρ0

∂p

∂y
(7.3)

0 = −
1

ρ0

∂p

∂z
(7.4)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (7.5)
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if pressure only a function of the sea level
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Figure 7-5 Schematic diagram of un-

steady flow of a homogeneous fluid

over an irregular bottom and the attend-

ing notation.

where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)

w(z = b + h) =
∂

∂t
(b + h) + u

∂

∂x
(b + h) + v

∂

∂y
(b + h) (7.15)

=
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y

w(z = b) = u
∂b

∂x
+ v

∂b

∂y
. (7.16)

Equation (7.14) then becomes, using the surface elevation η = b + h − H :

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
vertical variable no longer appears, and the independent variables are x, y and t. This system
is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − g

∂η

∂x
(7.19a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − g

∂η

∂y
(7.19b)

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (7.19c)
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at these levels are given by (4.28) and (4.31)
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Equation (7.14) then becomes, using the surface elevation η = b + h − H :

∂η
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+
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(hu) +

∂

∂y
(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
vertical variable no longer appears, and the independent variables are x, y and t. This system
is
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to move up and down, but only as long as it is not being vertically squeezed or stretched.

This property is a direct consequence of the inability of geostrophic flows to undergo any

two-dimensional divergence.

7.3 Generalization to non-geostrophic flows

Let us now suppose that the fluid is not rotating as rapidly, so that the Coriolis acceleration

no longer dwarfs other acceleration terms. We still continue to suppose that the fluid is

homogeneous and frictionless. The momentum equations are now augmented to include the

relative acceleration terms:
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. (7.12b)

Pressure still obeys (7.4), and continuity equation (7.5) has not changed.

If the horizontal flow field is initially independent of depth, it will remain so at all fu-

ture times. Indeed, the nonlinear advection terms and the Coriolis terms are initially z-
independent, and the pressure terms are, too, z-independent by virtue of (7.4). Thus, ∂u/∂t
and ∂v/∂t must be z-independent, which implies that u and v tend not to become depth-
varying and thus remain z-independent at all subsequent times. Let us restrict our attention
to such flows, which in the jargon of geophysical fluid dynamics are called barotropic. Equa-

tions (7.12) then reduce to

∂u
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+ u
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. (7.13b)

Although the flow has no vertical structure, the similarity to geostrophic flow ends here.

In particular, the flow is not required to be aligned with the isobars, nor is it devoid of vertical

velocity. To determine the vertical velocity, we turn to continuity equation (7.5),

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

in which we note that the first two terms are independent of z but do not necessarily add up
to zero. A vertical velocity varying linearly with depth can exist, enabling the flow to support

two-dimensional divergence and thus allowing a flow across isobaths.

An integration of the preceding equation over the entire fluid depth yields

(
∂u

∂x
+

∂v

∂y

) ∫ b+h

b
dz + [w]b+h

b = 0, (7.14)

re-write the continuity equation for the layer velocity

integrate from bottom to surface
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where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)

w(z = b + h) =
∂
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Equation (7.14) then becomes, using the surface elevation η = b + h − H :

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
vertical variable no longer appears, and the independent variables are x, y and t. This system
is
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+
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(hu) +
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(hv) = 0. (7.19c)

boundary conditions
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In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
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NEW continuity equation!
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where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)
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which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
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vertical variable no longer appears, and the independent variables are x, y and t. This system
is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − g

∂η

∂x
(7.19a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − g

∂η

∂y
(7.19b)

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (7.19c)

7.3. NON-GEOSTROPHIC FLOWS 193

Reference surface

h(x, y, t)

k

z = 0

η

u

!b(x, y)

!

"

H
Figure 7-5 Schematic diagram of un-

steady flow of a homogeneous fluid

over an irregular bottom and the attend-

ing notation.

where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities
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which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
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Equations of Geostrophic homogeneous flows

Chapter 7

Geostrophic Flows and Vorticity

Dynamics

(July 26, 2007) SUMMARY: This chapter treats homogeneous flows with small Rossby and

Ekman numbers. It is shown that such flows have a tendency to display vertical rigidity.

The concept of potential vorticity is then introduced. The solution of vertically homoge-

neous flows often involves a Poisson equation for the pressure distribution, and numerical

techniques are presented to accomplish this.

7.1 Homogeneous geostrophic flows

Let us consider rapidly rotating fluids by restricting our attention to situations where the Cori-

olis acceleration strongly dominates the various acceleration terms. Let us further consider

homogeneous fluids and ignore frictional effects, by assuming

RoT ! 1, Ro ! 1, Ek ! 1, (7.1)

together with ρ = 0 (no density variation). The lowest-order equations governing such homo-
geneous, frictionless, rapidly rotating fluids are the following simplified forms of equations

of motion, (4.21):

− fv = −
1

ρ0

∂p

∂x
(7.2)

+fu = −
1

ρ0

∂p

∂y
(7.3)

0 = −
1

ρ0

∂p

∂z
(7.4)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (7.5)
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where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)
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(hu) +

∂

∂y
(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
vertical variable no longer appears, and the independent variables are x, y and t. This system
is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − g

∂η

∂x
(7.19a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − g

∂η

∂y
(7.19b)

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (7.19c)



7.3. NON-GEOSTROPHIC FLOWS 193

Reference surface

h(x, y, t)

k

z = 0

η

u

!b(x, y)

!

"

H
Figure 7-5 Schematic diagram of un-

steady flow of a homogeneous fluid

over an irregular bottom and the attend-

ing notation.

where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)
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Equation (7.14) then becomes, using the surface elevation η = b + h − H :
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+
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(hu) +
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(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
vertical variable no longer appears, and the independent variables are x, y and t. This system
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where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)
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Equation (7.14) then becomes, using the surface elevation η = b + h − H :
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+
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(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
vertical variable no longer appears, and the independent variables are x, y and t. This system
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Equations of Geostrophic homogeneous flows
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where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)
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∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
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where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)
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which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
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Equations of Geostrophic homogeneous flows

describe unsteady motions of a 2D uniform density layer 
or 

of the depth average motion

shallow-water model or barotropic equations


