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Mass Budget - Continuity Equation

Chapter 3

Equations of Fluid Motion

(July 26, 2007) SUMMARY: The object of this chapter is to establish the equations govern-

ing the movement of a stratified fluid in a rotating environment. These equations are then

simplified somewhat by taking advantage of the so-called Boussinesq approximation. The

chapter concludes by introducing finite-volume discretizations and showing their relation to

the budget calculations used to establish the mathematical equations of motion.

3.1 Mass budget

A necessary statement in fluid mechanics is that mass be conserved. That is, any imbal-

ance between convergence and divergence in the three spatial directions must create a local

compression or expansion of the fluid. Mathematically, the statement takes the form:

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0, (3.1)

where ρ is the density of the fluid (in kg/m3), and (u, v, w) are the three components of
velocity (in m/s). All four variables generally vary in the three spatial directions, x and y in
the horizontal, z in the vertical, as well as time t.

This equation, often called the continuity equation, is classical in traditional fluid me-

chanics. Sturm (2001, page 4) reports that Leonardo da Vinci (1452–1519) had derived a

simplified form of the statement of mass conservation for a stream with narrowing width.

However, the three-dimensional differential form provided here was most likely written much

later and credit ought probably to go to Leonhard Euler (1707–1783). For a detailed deriva-

tion, the reader is referred to Batchelor (1967), Fox and McDonald (1992), or Appendix A of

the present text.

Note that spherical geometry introduces additional curvature terms, which we neglect

to be consistent with our previous restriction to length scales substantially shorter than the

global scale.
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In most geophysical systems, the fluid density varies, but not greatly, around a mean

value. For example, the average temperature and salinity in the ocean are T = 4◦C and
S = 34.7, to which corresponds a density ρ = 1028 kg/m3 at surface pressure. Variations in

density within one ocean basin rarely exceed 3 kg/m3. Even in estuaries where fresh river

waters (S = 0) ultimately turn into salty seawaters (S = 34.7), the relative density difference
is less than 3%.

By contrast, the air of the atmosphere becomes gradually more rarefied with altitude, and

its density varies from a maximum at ground level to nearly zero at great heights, thus cov-

ering a 100% range of variations. Most of the density changes, however, can be attributed to

hydrostatic pressure effects, leaving only a moderate variability caused by other factors. Fur-

thermore, weather patterns are confined to the lowest layer, the troposphere (approximately

10 km thick), within which the density variations responsible for the winds are usually no

more than 5%.

As it appears justifiable in most instances3 to assume that the fluid density, ρ, does not
depart much from a mean reference value, ρ0, we take the liberty to write:

ρ = ρ0 + ρ′(x, y, z, t) with |ρ′| ! ρ0, (3.16)

where the variation ρ′ caused by the existing stratification and/or fluid motions is small com-
pared to the reference value ρ0. Armed with this assumption, we proceed to simplify the

governing equations.

The continuity equation, (3.1), can be expanded as follows:

ρ0

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+ ρ′
(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+

(

∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ w

∂ρ′

∂z

)

= 0.

Geophysical flows indicate that relative variations of density in time and space are not larger

than – and usually much less than – the relative variations of the velocity field. This implies

that the terms in the third group are on the same order as – if not much less than – those in the

second. But, terms in this second group are always much less than those in the first because

|ρ′| ! ρ0. Therefore, only that first group of terms needs to be retained, and we write

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (3.17)

Physically, this statement means that conservation of mass has become conservation of vol-

ume. The reduction is to be expected because volume is a good proxy for mass when mass

per volume (= density) is nearly constant. A hidden implication of this simplification is the

elimination of sound waves, which rely on compressibility for their propagation.

The x– and y–momentum equations (3.2a) and (3.2b), being similar to each other, can
be treated simultaneously. There, ρ occurs as a factor only in front of the left-hand side. So,
wherever ρ′ occurs, ρ0 is there to dominate. It is thus safe to neglect ρ′ next to ρ0 in that

pair of equations. Further, the assumption of a Newtonian fluid (viscous stresses proportional

3 The situation is obviously somewhat uncertain on other planets that are known to possess a fluid layer ( Jupiter

and Neptune, for example), and on the sun.

Boussinesq Approximation
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Conservation of Volume
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the pressure p and the density ρ. An equation for ρ is provided by the conservation of mass
(3.1), and one additional equation is still required.

3.3 Equation of state

The description of the fluid system is not complete until we also provide a relation between

density and pressure. This relation is called the equation of state and tells us about the nature

of the fluid. To go further, we need to distinguish between air and water.

For an incompressible fluid such as pure water at ordinary pressures and temperatures,

the statement can be as simple as ρ = constant. In this case, the preceding set of equations
is complete. In the ocean, however, water density is a complicated function of pressure,

temperature and salinity. Details can be found in Gill (1982 – Appendix 3), but for most

applications, it can be assumed that the density of seawater is independent of pressure (

Incompressibility) and linearly dependent upon both temperature (warmer waters are lighter)

and salinity (saltier waters are denser), according to:

ρ = ρ0 [1 − α(T − T0) + β(S − S0)], (3.4)

where T is the temperature (in degrees Celsius or Kelvin) and S the salinity (defined in the
past as grams of salt per kilogram of seawater, i.e., in parts per thousand, denoted by ‰,

and more recently by the so-called practical salinity unit “psu”, derived from measurements

of conductivity and having no units). The constants ρ0, T0, and S0 are reference values

of density, temperature, and salinity, respectively, whereas α is the coefficient of thermal

expansion and β is called, by analogy, the coefficient of saline contraction1. Typical seawater
values are ρ0 = 1028 kg/m

3, T0 = 10
◦C = 283 K, S0 = 35, α = 1.7 × 10−4 K−1, and β = 7.6

× 10−4.

For air, which is compressible, the situation is quite different. Dry air in the atmosphere

behaves approximately as an ideal gas, and so we write:

ρ =
p

RT
, (3.5)

where R is a constant, equal to 287 m2/(s2 K) at ordinary temperatures and pressures. In the

preceding equation, T is the absolute temperature (temperature in degrees Celsius + 273.15).
Air in the atmosphere most often contains water vapor. For moist air, the preceding

equation is generalized by introducing a factor that varies with the specific humidity q:

ρ =
p

RT (1 + 0.608q)
. (3.6)

The specific humidity q is defined as

q =
mass of water vapor

mass of air
=

mass of water vapor

mass of dry air + mass of water vapor
. (3.7)

1The latter expression is a misnomer, since salinity increases density not by contraction of the water but by the

added mass of dissolved salt.

3.3. EQUATION OF STATE 73

the pressure p and the density ρ. An equation for ρ is provided by the conservation of mass
(3.1), and one additional equation is still required.

3.3 Equation of state

The description of the fluid system is not complete until we also provide a relation between

density and pressure. This relation is called the equation of state and tells us about the nature

of the fluid. To go further, we need to distinguish between air and water.

For an incompressible fluid such as pure water at ordinary pressures and temperatures,

the statement can be as simple as ρ = constant. In this case, the preceding set of equations
is complete. In the ocean, however, water density is a complicated function of pressure,

temperature and salinity. Details can be found in Gill (1982 – Appendix 3), but for most

applications, it can be assumed that the density of seawater is independent of pressure (

Incompressibility) and linearly dependent upon both temperature (warmer waters are lighter)

and salinity (saltier waters are denser), according to:

ρ = ρ0 [1 − α(T − T0) + β(S − S0)], (3.4)

where T is the temperature (in degrees Celsius or Kelvin) and S the salinity (defined in the
past as grams of salt per kilogram of seawater, i.e., in parts per thousand, denoted by ‰,

and more recently by the so-called practical salinity unit “psu”, derived from measurements

of conductivity and having no units). The constants ρ0, T0, and S0 are reference values

of density, temperature, and salinity, respectively, whereas α is the coefficient of thermal

expansion and β is called, by analogy, the coefficient of saline contraction1. Typical seawater
values are ρ0 = 1028 kg/m

3, T0 = 10
◦C = 283 K, S0 = 35, α = 1.7 × 10−4 K−1, and β = 7.6

× 10−4.

For air, which is compressible, the situation is quite different. Dry air in the atmosphere

behaves approximately as an ideal gas, and so we write:

ρ =
p

RT
, (3.5)

where R is a constant, equal to 287 m2/(s2 K) at ordinary temperatures and pressures. In the

preceding equation, T is the absolute temperature (temperature in degrees Celsius + 273.15).
Air in the atmosphere most often contains water vapor. For moist air, the preceding

equation is generalized by introducing a factor that varies with the specific humidity q:

ρ =
p

RT (1 + 0.608q)
. (3.6)

The specific humidity q is defined as

q =
mass of water vapor

mass of air
=

mass of water vapor

mass of dry air + mass of water vapor
. (3.7)

1The latter expression is a misnomer, since salinity increases density not by contraction of the water but by the

added mass of dissolved salt.

3.3. EQUATION OF STATE 73

the pressure p and the density ρ. An equation for ρ is provided by the conservation of mass
(3.1), and one additional equation is still required.

3.3 Equation of state

The description of the fluid system is not complete until we also provide a relation between

density and pressure. This relation is called the equation of state and tells us about the nature

of the fluid. To go further, we need to distinguish between air and water.

For an incompressible fluid such as pure water at ordinary pressures and temperatures,

the statement can be as simple as ρ = constant. In this case, the preceding set of equations
is complete. In the ocean, however, water density is a complicated function of pressure,

temperature and salinity. Details can be found in Gill (1982 – Appendix 3), but for most

applications, it can be assumed that the density of seawater is independent of pressure (

Incompressibility) and linearly dependent upon both temperature (warmer waters are lighter)

and salinity (saltier waters are denser), according to:

ρ = ρ0 [1 − α(T − T0) + β(S − S0)], (3.4)

where T is the temperature (in degrees Celsius or Kelvin) and S the salinity (defined in the
past as grams of salt per kilogram of seawater, i.e., in parts per thousand, denoted by ‰,

and more recently by the so-called practical salinity unit “psu”, derived from measurements

of conductivity and having no units). The constants ρ0, T0, and S0 are reference values

of density, temperature, and salinity, respectively, whereas α is the coefficient of thermal

expansion and β is called, by analogy, the coefficient of saline contraction1. Typical seawater
values are ρ0 = 1028 kg/m

3, T0 = 10
◦C = 283 K, S0 = 35, α = 1.7 × 10−4 K−1, and β = 7.6

× 10−4.

For air, which is compressible, the situation is quite different. Dry air in the atmosphere

behaves approximately as an ideal gas, and so we write:

ρ =
p

RT
, (3.5)

where R is a constant, equal to 287 m2/(s2 K) at ordinary temperatures and pressures. In the

preceding equation, T is the absolute temperature (temperature in degrees Celsius + 273.15).
Air in the atmosphere most often contains water vapor. For moist air, the preceding

equation is generalized by introducing a factor that varies with the specific humidity q:

ρ =
p

RT (1 + 0.608q)
. (3.6)

The specific humidity q is defined as

q =
mass of water vapor

mass of air
=

mass of water vapor

mass of dry air + mass of water vapor
. (3.7)

1The latter expression is a misnomer, since salinity increases density not by contraction of the water but by the

added mass of dissolved salt.

3.3. EQUATION OF STATE 73

the pressure p and the density ρ. An equation for ρ is provided by the conservation of mass
(3.1), and one additional equation is still required.

3.3 Equation of state

The description of the fluid system is not complete until we also provide a relation between

density and pressure. This relation is called the equation of state and tells us about the nature

of the fluid. To go further, we need to distinguish between air and water.

For an incompressible fluid such as pure water at ordinary pressures and temperatures,

the statement can be as simple as ρ = constant. In this case, the preceding set of equations
is complete. In the ocean, however, water density is a complicated function of pressure,

temperature and salinity. Details can be found in Gill (1982 – Appendix 3), but for most

applications, it can be assumed that the density of seawater is independent of pressure (

Incompressibility) and linearly dependent upon both temperature (warmer waters are lighter)

and salinity (saltier waters are denser), according to:

ρ = ρ0 [1 − α(T − T0) + β(S − S0)], (3.4)

where T is the temperature (in degrees Celsius or Kelvin) and S the salinity (defined in the
past as grams of salt per kilogram of seawater, i.e., in parts per thousand, denoted by ‰,

and more recently by the so-called practical salinity unit “psu”, derived from measurements

of conductivity and having no units). The constants ρ0, T0, and S0 are reference values

of density, temperature, and salinity, respectively, whereas α is the coefficient of thermal

expansion and β is called, by analogy, the coefficient of saline contraction1. Typical seawater
values are ρ0 = 1028 kg/m

3, T0 = 10
◦C = 283 K, S0 = 35, α = 1.7 × 10−4 K−1, and β = 7.6

× 10−4.

For air, which is compressible, the situation is quite different. Dry air in the atmosphere

behaves approximately as an ideal gas, and so we write:

ρ =
p

RT
, (3.5)

where R is a constant, equal to 287 m2/(s2 K) at ordinary temperatures and pressures. In the

preceding equation, T is the absolute temperature (temperature in degrees Celsius + 273.15).
Air in the atmosphere most often contains water vapor. For moist air, the preceding

equation is generalized by introducing a factor that varies with the specific humidity q:

ρ =
p

RT (1 + 0.608q)
. (3.6)

The specific humidity q is defined as

q =
mass of water vapor

mass of air
=

mass of water vapor

mass of dry air + mass of water vapor
. (3.7)

1The latter expression is a misnomer, since salinity increases density not by contraction of the water but by the

added mass of dissolved salt.

3.3. EQUATION OF STATE 73

the pressure p and the density ρ. An equation for ρ is provided by the conservation of mass
(3.1), and one additional equation is still required.

3.3 Equation of state

The description of the fluid system is not complete until we also provide a relation between

density and pressure. This relation is called the equation of state and tells us about the nature

of the fluid. To go further, we need to distinguish between air and water.

For an incompressible fluid such as pure water at ordinary pressures and temperatures,

the statement can be as simple as ρ = constant. In this case, the preceding set of equations
is complete. In the ocean, however, water density is a complicated function of pressure,

temperature and salinity. Details can be found in Gill (1982 – Appendix 3), but for most

applications, it can be assumed that the density of seawater is independent of pressure (

Incompressibility) and linearly dependent upon both temperature (warmer waters are lighter)

and salinity (saltier waters are denser), according to:

ρ = ρ0 [1 − α(T − T0) + β(S − S0)], (3.4)

where T is the temperature (in degrees Celsius or Kelvin) and S the salinity (defined in the
past as grams of salt per kilogram of seawater, i.e., in parts per thousand, denoted by ‰,

and more recently by the so-called practical salinity unit “psu”, derived from measurements

of conductivity and having no units). The constants ρ0, T0, and S0 are reference values

of density, temperature, and salinity, respectively, whereas α is the coefficient of thermal

expansion and β is called, by analogy, the coefficient of saline contraction1. Typical seawater
values are ρ0 = 1028 kg/m

3, T0 = 10
◦C = 283 K, S0 = 35, α = 1.7 × 10−4 K−1, and β = 7.6

× 10−4.

For air, which is compressible, the situation is quite different. Dry air in the atmosphere

behaves approximately as an ideal gas, and so we write:

ρ =
p

RT
, (3.5)

where R is a constant, equal to 287 m2/(s2 K) at ordinary temperatures and pressures. In the

preceding equation, T is the absolute temperature (temperature in degrees Celsius + 273.15).
Air in the atmosphere most often contains water vapor. For moist air, the preceding

equation is generalized by introducing a factor that varies with the specific humidity q:

ρ =
p

RT (1 + 0.608q)
. (3.6)

The specific humidity q is defined as

q =
mass of water vapor

mass of air
=

mass of water vapor

mass of dry air + mass of water vapor
. (3.7)

1The latter expression is a misnomer, since salinity increases density not by contraction of the water but by the

added mass of dissolved salt.
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usually a main contributor to the flow field. The only place where total pressure comes into

play is then the equation of state.

3.8 Flux formulation and conservative form

The preceding equations form a complete set of equations and there is no need to invoke

further physical laws. Nevertheless we can manipulate the equations to write them in another

form, which, though mathematically equivalent, has some practical advantages. Consider

for example the equation for temperature (3.23), which was deduced from the energy equa-

tion using the Boussinesq approximation. Under the same Boussinesq approximation, mass

conservation was reduced to volume conservation (3.17) and we can write the temperature

equation by first expanding the material derivative (3.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= κT ∇2T, (3.25)

and then using volume conservation (3.17) to obtain

∂T

∂t
+

∂

∂x
(uT ) +

∂

∂y
(vT ) +

∂

∂z
(wT )

−
∂

∂x

(

κT
∂T

∂x

)

−
∂

∂y

(

κT
∂T

∂y

)

−
∂

∂z

(

κT
∂T

∂z

)

= 0. (3.26)

The latter form is called a conservative formulation, the reason for which will become clear

upon applying the divergence theorem. This theorem, also known as Gauss’s Theorem, states

that for any vector (qx, qy , qz) the volume integral of its divergence is equal to the integral of

the flux over the enclosing surface:

∫

V

(

∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)

dx dy dz =

∫

S
(qxnx + qyny + qznz) dS (3.27)

where the vector (nx, ny , nz) is the outward unit vector normal to the surface S delimiting
the volume V (Figure 3-1). Integrating the conservative form (3.26) over a fixed volume is
then particularly simple and leads to an expression for the evolution of the heat content in the

volume as a function of the fluxes entering and leaving the volume:

d

dt

∫

V
T dt +

∫

S
q ·n dS = 0. (3.28)

The flux q of temperature is composed of an advective flux (uT, vT, wT ) due to flow
across the surface and a diffusive (conductive) flux −κT (∂T/∂x, ∂T/∂y, ∂T/∂z). If the
value of each flux is known on a closed surface, the evolution of the average temperature
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3.2 Momentum budget

For a fluid, Isaac Newton’s second law “mass times acceleration equals the sum of forces”

is better stated per unit volume with density replacing mass and, in the absence of rotation

(Ω = 0), the resulting equations are called the Navier-Stokes equations. For geophysical
flows, rotation is important and acceleration terms must be augmented as done in (2.20):

x : ρ

(

du

dt
+ f∗w − fv

)

= −
∂p

∂x
+

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
(3.2a)

y : ρ

(

dv

dt
+ fu

)

= −
∂p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+

∂τyz

∂z
(3.2b)

z : ρ

(

dw

dt
− f∗u

)

= −
∂p

∂z
− ρg +

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
, (3.2c)

where the x–, y– and z–axes are directed eastward, northward and upward, respectively,
f = 2Ω sinϕ is the Coriolis parameter, f∗ = 2Ω cosϕ the reciprocal Coriolis parameter, ρ
density, p pressure, g the gravitational acceleration, and the τ terms represent the normal and
shear stresses due to friction.

That the pressure force is equal and opposite to the pressure gradient and that the viscous

force involves the derivatives of a stress tensor should be familiar to the student who has

had an introductory course in fluid mechanics. Appendix A retraces the formulation of those

terms for the student new to fluid mechanics.

The effective gravitational force (sum of true gravitational force and the centrifugal force;

see Section 2.2) is ρg per unit volume and is directed vertically downward. So, the corre-
sponding term occurs only in the third equation, for the vertical direction.

Because the acceleration in a fluid is not counted as the rate of change in velocity at a

fixed location but as the change in velocity of a fluid particle as it moves along with the flow,

the time derivatives in the acceleration components, du/dt, dv/dt and dw/dt, consist of both
the local time rate of change and the so-called advective terms:

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (3.3)

This derivative is called the material derivative.

The preceding equations assume a Cartesian system of coordinates and thus hold only

if the dimension of the domain under consideration is much shorter than the earth’s radius.

On Earth, a length scale not exceeding 1000 km is usually acceptable. The neglect of the

curvature terms is in some ways analogous to the distortion introduced by mapping the curved

earth’s surface onto a plane.

Should the dimensions of the domain under consideration be comparable to the size of

the planet, the x–, y– and z–axes need to be replaced by spherical coordinates, and curvature
terms enter all equations. See Appendix A for those equations. For simplicity in the expo-

sition of the basic principles of geophysical fluid dynamics, we shall neglect throughout this

book the extraneous curvature terms and use Cartesian coordinates exclusively.

Equations (3.2a) through (3.2c) can be viewed as three equations providing the three

velocity components,u, v andw. They implicate, however, two additional quantities, namely,
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to velocity gradients), with the use of the reduced continuity equation, (3.17), permits us to

write the components of the stress tensor as

τxx = µ

(

∂u

∂x
+

∂u

∂x

)

, τxy = µ

(

∂u

∂y
+

∂v

∂x

)

, τxz = µ

(

∂u

∂z
+

∂w

∂x

)

τyy = µ

(

∂v

∂y
+

∂v

∂y

)

, τyz = µ

(

∂v

∂z
+

∂w

∂y

)

τzz = µ

(

∂w

∂z
+

∂w

∂z

)

, (3.18)

where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield

du

dt
+ f∗w − fv = −

1

ρ0

∂p

∂x
+ ν ∇2u (3.19)

dv

dt
+ fu = −

1

ρ0

∂p

∂y
+ ν ∇2v. (3.20)

The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw

dt
− f∗ u = −

1

ρ0

∂p′

∂z
−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.

Viscous stress proportional to velocity gradients
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to velocity gradients), with the use of the reduced continuity equation, (3.17), permits us to
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where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield

du

dt
+ f∗w − fv = −

1

ρ0

∂p

∂x
+ ν ∇2u (3.19)

dv

dt
+ fu = −

1

ρ0

∂p

∂y
+ ν ∇2v. (3.20)

The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw

dt
− f∗ u = −

1

ρ0

∂p′

∂z
−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield
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The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw
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− f∗ u = −

1

ρ0

∂p′
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−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the
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The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw
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− f∗ u = −
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−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.

78 CHAPTER 3. EQUATIONS

to velocity gradients), with the use of the reduced continuity equation, (3.17), permits us to

write the components of the stress tensor as

τxx = µ

(

∂u

∂x
+

∂u

∂x

)

, τxy = µ

(

∂u

∂y
+

∂v

∂x

)

, τxz = µ

(

∂u

∂z
+

∂w

∂x

)

τyy = µ

(

∂v

∂y
+

∂v

∂y

)

, τyz = µ

(

∂v

∂z
+

∂w

∂y

)

τzz = µ

(

∂w

∂z
+

∂w

∂z

)

, (3.18)

where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield

du

dt
+ f∗w − fv = −

1
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∂p

∂x
+ ν ∇2u (3.19)

dv

dt
+ fu = −
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The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw

dt
− f∗ u = −

1

ρ0

∂p′

∂z
−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.

Only dynamic pressure is important to motion

78 CHAPTER 3. EQUATIONS

to velocity gradients), with the use of the reduced continuity equation, (3.17), permits us to

write the components of the stress tensor as

τxx = µ

(

∂u

∂x
+

∂u

∂x

)

, τxy = µ

(

∂u

∂y
+

∂v

∂x

)

, τxz = µ

(

∂u

∂z
+

∂w

∂x

)

τyy = µ

(

∂v

∂y
+

∂v

∂y

)

, τyz = µ

(

∂v

∂z
+

∂w

∂y

)

τzz = µ

(

∂w

∂z
+

∂w

∂z

)

, (3.18)

where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield

du
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1
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+ ν ∇2u (3.19)

dv
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The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw

dt
− f∗ u = −

1

ρ0

∂p′
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−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield

du

dt
+ f∗w − fv = −

1
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∂x
+ ν ∇2u (3.19)

dv

dt
+ fu = −
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The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw

dt
− f∗ u = −

1

ρ0

∂p′

∂z
−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield

du
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+ ν ∇2u (3.19)
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The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw

dt
− f∗ u = −

1

ρ0

∂p′

∂z
−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield
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The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw
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− f∗ u = −
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−
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+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield

du

dt
+ f∗w − fv = −

1

ρ0

∂p

∂x
+ ν ∇2u (3.19)

dv

dt
+ fu = −

1

ρ0

∂p

∂y
+ ν ∇2v. (3.20)

The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to
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after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield
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dt
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1

ρ0
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∂y
+ ν ∇2v. (3.20)

The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw
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− f∗ u = −
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−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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〈uv〉 = 〈〈u〉 〈v〉〉 + 〈〈u〉 v′〉↗=0 + 〈〈v〉u′〉↗=0 + 〈u′v′〉

= 〈u〉 〈v〉 + 〈u′v′〉 (4.2)

and similarly for 〈uu〉, 〈wu〉, 〈uρ〉 etc. We recognize here that the average of a product is not
equal to the product of the averages. This is a double-edged sword: On one hand, it generates

mathematical complications but, on the other hand, it also creates interesting situations.

Our objective is to establish equations governing the mean quantities, 〈u〉, 〈v〉, 〈w〉, 〈p〉
and 〈ρ〉. Starting with the average of the x−momentum equation (3.19), we have:
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+

∂ 〈vu〉

∂y
+

∂ 〈wu〉

∂z
+ f∗ 〈w〉 − f 〈v〉 = −

1

ρ0

∂ 〈p〉

∂x
+ ν ∇2 〈u〉 (4.3)

which becomes
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∂t
+

∂(〈u〉 〈u〉)

∂x
+

∂(〈u〉 〈v〉)

∂y
+

∂(〈u〉 〈w〉)

∂z
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−
1
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∂x
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∂ 〈u′u′〉
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∂ 〈u′v′〉

∂y
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∂ 〈u′w′〉

∂z
. (4.4)

We note that this last equation for the mean field looks identical to the original equation,

except for the presence of three new terms at the end of the right-hand side. These terms

represent the effects of the turbulent fluctuations on the mean flow. Combining these terms

with corresponding frictional terms
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ν
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)

,
∂
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(

ν
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)

,
∂
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(

ν
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∂z
− 〈u′w′〉

)

indicates that the averages of velocity fluctuations add to the viscous stresses (for example,

−〈u′w′〉 adds to ν∂ 〈u〉 /∂z) and can therefore be considered as frictional stresses caused by
turbulence. To give credit to Osborne Reynolds who first decomposed the flow into mean and

fluctuating components, the expressions−〈u′u′〉, −〈u′v′〉 and −〈u′w′〉 are called Reynolds
stresses. Since they do not have the same form as the viscous stresses (ν∂ 〈u〉 /∂x etc.), it

can be said that the mean turbulent flow behaves as a fluid governed by a frictional law other

than that of viscosity. In other words, turbulent flow behaves as a non-Newtonian fluid.

Similar averages of the y- and z-momentum equations (3.20)–(3.22) over the turbulent
fluctuations yield
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)

(4.5)

denotes time/space average
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to velocity gradients), with the use of the reduced continuity equation, (3.17), permits us to

write the components of the stress tensor as
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∂w
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)

τzz = µ

(

∂w

∂z
+

∂w

∂z

)

, (3.18)

where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield

du

dt
+ f∗w − fv = −

1

ρ0

∂p

∂x
+ ν ∇2u (3.19)

dv

dt
+ fu = −

1

ρ0

∂p

∂y
+ ν ∇2v. (3.20)

The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw

dt
− f∗ u = −

1

ρ0

∂p′

∂z
−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield
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The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw

dt
− f∗ u = −

1

ρ0

∂p′

∂z
−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.
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〈uv〉 = 〈〈u〉 〈v〉〉 + 〈〈u〉 v′〉↗=0 + 〈〈v〉u′〉↗=0 + 〈u′v′〉

= 〈u〉 〈v〉 + 〈u′v′〉 (4.2)

and similarly for 〈uu〉, 〈wu〉, 〈uρ〉 etc. We recognize here that the average of a product is not
equal to the product of the averages. This is a double-edged sword: On one hand, it generates

mathematical complications but, on the other hand, it also creates interesting situations.

Our objective is to establish equations governing the mean quantities, 〈u〉, 〈v〉, 〈w〉, 〈p〉
and 〈ρ〉. Starting with the average of the x−momentum equation (3.19), we have:

∂ 〈u〉

∂t
+

∂ 〈uu〉

∂x
+

∂ 〈vu〉

∂y
+

∂ 〈wu〉

∂z
+ f∗ 〈w〉 − f 〈v〉 = −

1

ρ0

∂ 〈p〉

∂x
+ ν ∇2 〈u〉 (4.3)

which becomes

∂ 〈u〉

∂t
+

∂(〈u〉 〈u〉)

∂x
+

∂(〈u〉 〈v〉)

∂y
+

∂(〈u〉 〈w〉)

∂z
+ f∗ 〈w〉 − f 〈v〉 =

−
1

ρ0

∂ 〈p〉
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+ ν ∇2 〈u〉 −

∂ 〈u′u′〉

∂x
−

∂ 〈u′v′〉

∂y
−

∂ 〈u′w′〉

∂z
. (4.4)

We note that this last equation for the mean field looks identical to the original equation,

except for the presence of three new terms at the end of the right-hand side. These terms

represent the effects of the turbulent fluctuations on the mean flow. Combining these terms

with corresponding frictional terms

∂
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(

ν
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∂x
− 〈u′u′〉

)

,
∂
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(

ν
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− 〈u′v′〉

)

,
∂

∂z

(

ν
∂ 〈u〉

∂z
− 〈u′w′〉

)

indicates that the averages of velocity fluctuations add to the viscous stresses (for example,

−〈u′w′〉 adds to ν∂ 〈u〉 /∂z) and can therefore be considered as frictional stresses caused by
turbulence. To give credit to Osborne Reynolds who first decomposed the flow into mean and

fluctuating components, the expressions−〈u′u′〉, −〈u′v′〉 and −〈u′w′〉 are called Reynolds
stresses. Since they do not have the same form as the viscous stresses (ν∂ 〈u〉 /∂x etc.), it

can be said that the mean turbulent flow behaves as a fluid governed by a frictional law other

than that of viscosity. In other words, turbulent flow behaves as a non-Newtonian fluid.

Similar averages of the y- and z-momentum equations (3.20)–(3.22) over the turbulent
fluctuations yield
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∂t
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∂(〈u〉 〈v〉)
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)

(4.5)

Statistically average flow - Reynolds averaging

Chapter 4

Equations Governing Geophysical

Flows

(July 26, 2007) SUMMARY: This chapter continues the development of the equations that

form the basis of dynamical meteorology and physical oceanography. Averaging is performed

over turbulent fluctuations and further simplifications are justified based on a scale analysis.

In the process, some important dimensionless numbers are introduced. The need for an ap-

propriate set of initial and boundary conditions is also explored from mathematical, physical

and numerical points of view.

4.1 Reynolds-averaged equations

Geophysical flows are typically in a state of turbulence, and most often we are only interested

in the statistically averaged flow, leaving aside all turbulent fluctuations. To this effect and

following Reynolds (1894), we decompose each variable into a mean, denoted with a set of

brackets, and a fluctuation, denoted by a prime:

u = 〈u〉 + u′, (4.1)

such that 〈u′〉 = 0 by definition.

There are several ways to define the averaging process, some more rigorous than others,

but we shall not be concerned here with those issues, prefering to think of the mean as a

temporal average over rapid turbulent fluctuations, on a time interval long enough to obtain

a statistically significant mean, yet short enough to retain the slower evolution of the flow

under consideration. Our hypothesis is that such an intermediate time interval exists.

Quadratic expressions such as the product uv of two velocity components have the fol-
lowing property:
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where µ is called the coefficient of dynamic viscosity. A subsequent division by ρ0 and the

introduction of the kinematic viscosity ν = µ/ρ0 yield

du

dt
+ f∗w − fv = −

1

ρ0

∂p

∂x
+ ν ∇2u (3.19)

dv

dt
+ fu = −

1

ρ0

∂p

∂y
+ ν ∇2v. (3.20)

The next candidate for simplification is the z–momentum equation, (3.2c). There, ρ ap-
pears as a factor not only in front of the left-hand side, but also in a product with g on the
right. On the left, it is safe to neglect ρ′ in front of ρ0 for the same reason as previously,

but on the right it is not. Indeed, the term ρg accounts for the weight of the fluid, which, as
we know, causes an increase of pressure with depth (or, a decrease of pressure with height,

depending on whether we think of the ocean or atmosphere). With the ρ0 part of the density

goes a hydrostatic pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz, (3.21)

so that dp0/dz = −ρ0g, and the vertical-momentum equation at this stage reduces to

dw

dt
− f∗ u = −

1

ρ0

∂p′

∂z
−

ρ′g

ρ0
+ ν ∇2w, (3.22)

after a division by ρ0 for convenience. No further simplification is possible because the

remaining ρ′ term no longer falls in the shadow of a neighboring term proportional to ρ0.

Actually, as we will see later, the term ρ′g is the one responsible for the buoyancy forces that
are such a crucial ingredient of geophysical fluid dynamics.

Note that the hydrostatic pressure p0(z) can be subtracted from p in the reduced momen-
tum equations, (3.19) and (3.20), because it has no derivatives with respect to x and y, and is
dynamically inactive.

For water, the treatment of the energy equation, (3.8), is straightforward. First, continuity

of volume, (3.17), eliminates the middle term, leaving

ρCv
dT

dt
= kT∇

2T.
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〈uv〉 = 〈〈u〉 〈v〉〉 + 〈〈u〉 v′〉↗=0 + 〈〈v〉u′〉↗=0 + 〈u′v′〉

= 〈u〉 〈v〉 + 〈u′v′〉 (4.2)

and similarly for 〈uu〉, 〈wu〉, 〈uρ〉 etc. We recognize here that the average of a product is not
equal to the product of the averages. This is a double-edged sword: On one hand, it generates

mathematical complications but, on the other hand, it also creates interesting situations.

Our objective is to establish equations governing the mean quantities, 〈u〉, 〈v〉, 〈w〉, 〈p〉
and 〈ρ〉. Starting with the average of the x−momentum equation (3.19), we have:

∂ 〈u〉

∂t
+

∂ 〈uu〉

∂x
+

∂ 〈vu〉

∂y
+

∂ 〈wu〉

∂z
+ f∗ 〈w〉 − f 〈v〉 = −

1

ρ0

∂ 〈p〉

∂x
+ ν ∇2 〈u〉 (4.3)

which becomes

∂ 〈u〉

∂t
+

∂(〈u〉 〈u〉)

∂x
+

∂(〈u〉 〈v〉)

∂y
+

∂(〈u〉 〈w〉)

∂z
+ f∗ 〈w〉 − f 〈v〉 =

−
1

ρ0

∂ 〈p〉
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+ ν ∇2 〈u〉 −

∂ 〈u′u′〉

∂x
−

∂ 〈u′v′〉

∂y
−

∂ 〈u′w′〉

∂z
. (4.4)

We note that this last equation for the mean field looks identical to the original equation,

except for the presence of three new terms at the end of the right-hand side. These terms

represent the effects of the turbulent fluctuations on the mean flow. Combining these terms

with corresponding frictional terms

∂
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ν
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,
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∂z
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)

indicates that the averages of velocity fluctuations add to the viscous stresses (for example,

−〈u′w′〉 adds to ν∂ 〈u〉 /∂z) and can therefore be considered as frictional stresses caused by
turbulence. To give credit to Osborne Reynolds who first decomposed the flow into mean and

fluctuating components, the expressions−〈u′u′〉, −〈u′v′〉 and −〈u′w′〉 are called Reynolds
stresses. Since they do not have the same form as the viscous stresses (ν∂ 〈u〉 /∂x etc.), it

can be said that the mean turbulent flow behaves as a fluid governed by a frictional law other

than that of viscosity. In other words, turbulent flow behaves as a non-Newtonian fluid.

Similar averages of the y- and z-momentum equations (3.20)–(3.22) over the turbulent
fluctuations yield
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)

(4.5)

turbulent fluctuations of the mean flow



Momentum Budget - Navier-Stokes Equations + Reynolds averaging

Statistically average flow - Reynolds averaging

92 CHAPTER 4. EQUATIONS

〈uv〉 = 〈〈u〉 〈v〉〉 + 〈〈u〉 v′〉↗=0 + 〈〈v〉u′〉↗=0 + 〈u′v′〉

= 〈u〉 〈v〉 + 〈u′v′〉 (4.2)

and similarly for 〈uu〉, 〈wu〉, 〈uρ〉 etc. We recognize here that the average of a product is not
equal to the product of the averages. This is a double-edged sword: On one hand, it generates

mathematical complications but, on the other hand, it also creates interesting situations.

Our objective is to establish equations governing the mean quantities, 〈u〉, 〈v〉, 〈w〉, 〈p〉
and 〈ρ〉. Starting with the average of the x−momentum equation (3.19), we have:

∂ 〈u〉

∂t
+

∂ 〈uu〉

∂x
+

∂ 〈vu〉

∂y
+

∂ 〈wu〉

∂z
+ f∗ 〈w〉 − f 〈v〉 = −

1

ρ0

∂ 〈p〉

∂x
+ ν ∇2 〈u〉 (4.3)

which becomes

∂ 〈u〉

∂t
+

∂(〈u〉 〈u〉)

∂x
+

∂(〈u〉 〈v〉)

∂y
+

∂(〈u〉 〈w〉)

∂z
+ f∗ 〈w〉 − f 〈v〉 =

−
1

ρ0

∂ 〈p〉

∂x
+ ν ∇2 〈u〉 −

∂ 〈u′u′〉

∂x
−

∂ 〈u′v′〉

∂y
−

∂ 〈u′w′〉

∂z
. (4.4)

We note that this last equation for the mean field looks identical to the original equation,

except for the presence of three new terms at the end of the right-hand side. These terms

represent the effects of the turbulent fluctuations on the mean flow. Combining these terms

with corresponding frictional terms

∂

∂x

(

ν
∂ 〈u〉

∂x
− 〈u′u′〉

)

,
∂

∂y

(

ν
∂ 〈u〉

∂y
− 〈u′v′〉

)

,
∂

∂z

(

ν
∂ 〈u〉

∂z
− 〈u′w′〉

)

indicates that the averages of velocity fluctuations add to the viscous stresses (for example,

−〈u′w′〉 adds to ν∂ 〈u〉 /∂z) and can therefore be considered as frictional stresses caused by
turbulence. To give credit to Osborne Reynolds who first decomposed the flow into mean and

fluctuating components, the expressions−〈u′u′〉, −〈u′v′〉 and −〈u′w′〉 are called Reynolds
stresses. Since they do not have the same form as the viscous stresses (ν∂ 〈u〉 /∂x etc.), it

can be said that the mean turbulent flow behaves as a fluid governed by a frictional law other

than that of viscosity. In other words, turbulent flow behaves as a non-Newtonian fluid.

Similar averages of the y- and z-momentum equations (3.20)–(3.22) over the turbulent
fluctuations yield

∂ 〈v〉

∂t
+

∂(〈u〉 〈v〉)

∂x
+

∂(〈v〉 〈v〉)

∂y
+

∂(〈v〉 〈w〉)

∂z
+ f 〈u〉 −

1

ρ0

∂ 〈p〉

∂y
=

∂

∂x

(

ν
∂ 〈v〉

∂x
− 〈u′v′〉

)

+
∂

∂y

(

ν
∂ 〈v〉

∂y
− 〈v′v′〉

)

+
∂

∂z

(

ν
∂ 〈v〉

∂z
− 〈v′w′〉

)

(4.5)

turbulent fluctuations of the mean flow
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represent the effects of the turbulent fluctuations on the mean flow. Combining these terms

with corresponding frictional terms
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indicates that the averages of velocity fluctuations add to the viscous stresses (for example,

−〈u′w′〉 adds to ν∂ 〈u〉 /∂z) and can therefore be considered as frictional stresses caused by
turbulence. To give credit to Osborne Reynolds who first decomposed the flow into mean and

fluctuating components, the expressions−〈u′u′〉, −〈u′v′〉 and −〈u′w′〉 are called Reynolds
stresses. Since they do not have the same form as the viscous stresses (ν∂ 〈u〉 /∂x etc.), it

can be said that the mean turbulent flow behaves as a fluid governed by a frictional law other

than that of viscosity. In other words, turbulent flow behaves as a non-Newtonian fluid.

Similar averages of the y- and z-momentum equations (3.20)–(3.22) over the turbulent
fluctuations yield
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add to viscous stresses = eddy stresses
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Reynolds stresses
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4.2 Eddy coefficients

Computer models of geophysical fluid systems are limited in their spatial resolution. They
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Since we will work exclusively with averaged equations in the rest of the book (unless

otherwise specified), there is no longer any need to denote averaged quantities with brackets.

Consequently, 〈u〉 has been replaced by u and similarly for all other variables.
In the energy (density) equation, heat and salt molecular diffusion needs likewise to be

superseded by the dispersing effect of unresolved turbulent motions and subgrid-scale pro-

cesses. Using the same horizontal eddy viscosityA for energy as for momentum is generally

adequate, because the larger turbulent motions and subgrid processes act to disperse heat and

salt as effectively as momentum. In the vertical, however, the practice is usually to distin-

guish dispersion of energy from that of momentum by introducing a vertical eddy diffusivity

κE that differs from the vertical eddy viscosity νE . This difference stems from the specific

turbulent behavior of each state variable and will be further discussed in Section 14.3. The

energy (density) equation then becomes:
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, (4.8)

The linear continuity equation is not subjected to any such adaptation and remains unchanged:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (4.9)

For more details on eddy viscosity and diffusivity and some schemes to make those de-

pend on flow properties, the reader is referred to textbooks on turbulence, such as Tennekes

and Lumley (1972) or Pope (2000). A widely used method to incorporate subgrid-scale pro-

cesses in the horizontal eddy viscosity is that proposed by Smagorinsky (1964):

A = ∆x ∆y

√
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∂x
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∂v
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)2

+
1

2

(
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∂y
+

∂v

∂x

)2

, (4.10)

in which ∆x and ∆y are the local grid dimensions. Because such subgrid-scale parameteri-
zation is meant to represent physical processes, it ought to obey certain symmetry properties,

notably invariance with respect to rotation of the coordinate system in the horizontal plane.

An appropriate formulation for A ought therefore to be expressed solely in terms of the ro-

tational invariants of the tensor formed by the velocity derivatives. One should note that the

preceding formulation unfortunately does not satisfy this condition. Nonetheless it is often

used in numerical models.
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Table 4.1 TYPICAL SCALES OF ATMOSPHERIC AND OCEANIC FLOWS

Variable Scale Unit Atmospheric value Oceanic value

x, y L m 100 km = 105 m 10 km = 104 m

z H m 1 km = 103 m 100 m = 102 m

t T s ≥ 1
2
day " 4 × 104 s ≥ 1 day " 9 × 104 s

u, v U m/s 10 m/s 0.1 m/s

w W m/s

variablep P kg/(m·s2)
ρ ∆ρ kg/m3

4.3 Scales of motion

Simplifications of the equations established in the preceding section are possible beyond the

Boussinesq approximation and averaging over turbulent fluctuations. However, these require

a preliminary discussion of orders of magnitude. Accordingly, let us introduce a scale for

every variable, as we already did in a limited way in 1.10. By scale, we mean a dimensional

constant of dimensions identical to that of the variable and having a numerical value repre-

sentative of the values of that same variable. Table 4.1 provides illustrative scales for the

variables of interest in geophysical fluid flow. Obviously, scale values do vary with every

application, and the values listed in Table 4.1 are only suggestive. Even so, the conclusions

drawn from the use of these particular values stand in the vast majority of cases. If doubt

arises in a specific situation, the following scale analysis can always be redone.

In the construction of Table 4.1, we were careful to satisfy the criteria of geophysical fluid

dynamics outlined in Sections 1.5 and 1.6,

T !
1

Ω
, (4.11)

for the time scale and

U

L
" Ω, (4.12)

for the velocity and length scales. It is generally not required to discriminate between the

two horizontal directions, and we assign the same length scale L to both coordinates and the
same velocity scale U to both velocity components. The same, however, cannot be said of the

vertical direction. Geophysical flows are typically confined to domains that are much wider

than they are thick, and the aspect ratioH/L is small. The atmospheric layer that determines
our weather is only about 10 km thick, yet cyclones and anticyclones spread over thousands

of kilometers. Similarly, ocean currents are generally confined to the upper hundred meters

of the water column but extend over tens of kilometers or more, up to the width of the ocean

basin. It follows that for large-scale motions
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H ! L, (4.13)

and we expectW to be vastly different from U .
The continuity equation in its reduced form (4.9) contains three terms, of respective orders

of magnitude:

U

L
,

U

L
,

W

H
.

We ought to examine three cases: W/H is much less than, on the order of, or much greater

than U/L. The third case must be ruled out. Indeed, if W/H " U/L, the equation reduces
in first approximation to ∂w/∂z = 0, which implies that w is constant in the vertical; because
of a bottom somewhere, that flow must be supplied by lateral convergence (see later section

4.6.1), and we deduce that the terms ∂u/∂x and/or ∂v/∂y may not be both neglected at the
same time. In sum, w must be much smaller than initially thought.

In the first case, the leading balance is two-dimensional, ∂u/∂x + ∂v/∂y = 0, which
implies that convergence in one horizontal direction must be compensated by divergence in

the other horizontal direction. This is very possible. The intermediate case, with W/H on

the order of U/L, implies a three-way balance, which is also acceptable. In summary, the
vertical-velocity scale must be constrained by

W !
H

L
U (4.14)

and, by virtue of (4.13),

W ! U. (4.15)

In other words, large-scale geophysical flows are shallow (H ! L) and nearly two-dimensional
(W ! U ).

Let us now consider the x–momentum equation in its Boussinesq and turbulence-averaged
form (4.7a). Its various terms scale sequentially as

U

T
,

U2

L
,

U2

L
,

WU

H
, ΩW , ΩU ,

P

ρ0L
,

AU

L2
,

AU

L2
,

νEU

H2
.

The previous remark immediately shows that the fifth term (ΩW ) is always much smaller

than the sixth (ΩU ) and can be safely neglected1.
Because of the fundamental importance of the rotation terms in geophysical fluid dy-

namics, we can anticipate that the pressure-gradient term (the driving force) will scale as the

Coriolis terms, i.e.,

P

ρ0L
= ΩU → P = ρ0ΩLU. (4.16)

1Note, however, that near the Equator, where f goes to zero while f∗ reaches its maximum, the simplification
may be invalidated. If this is the case, a re-examination of the scales is warranted. The fifth term is likely to remain

much smaller than some other terms, such as the pressure gradient, but there may be instances when the f∗ term
must be retained. Because such a situation is exceptional, we will dispense with the f∗ term here.
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The previous remark immediately shows that the fifth term (ΩW ) is always much smaller
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1Note, however, that near the Equator, where f goes to zero while f∗ reaches its maximum, the simplification
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much smaller than some other terms, such as the pressure gradient, but there may be instances when the f∗ term
must be retained. Because such a situation is exceptional, we will dispense with the f∗ term here.
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Since we will work exclusively with averaged equations in the rest of the book (unless

otherwise specified), there is no longer any need to denote averaged quantities with brackets.

Consequently, 〈u〉 has been replaced by u and similarly for all other variables.
In the energy (density) equation, heat and salt molecular diffusion needs likewise to be

superseded by the dispersing effect of unresolved turbulent motions and subgrid-scale pro-

cesses. Using the same horizontal eddy viscosityA for energy as for momentum is generally

adequate, because the larger turbulent motions and subgrid processes act to disperse heat and

salt as effectively as momentum. In the vertical, however, the practice is usually to distin-

guish dispersion of energy from that of momentum by introducing a vertical eddy diffusivity

κE that differs from the vertical eddy viscosity νE . This difference stems from the specific

turbulent behavior of each state variable and will be further discussed in Section 14.3. The

energy (density) equation then becomes:
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The linear continuity equation is not subjected to any such adaptation and remains unchanged:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (4.9)

For more details on eddy viscosity and diffusivity and some schemes to make those de-

pend on flow properties, the reader is referred to textbooks on turbulence, such as Tennekes

and Lumley (1972) or Pope (2000). A widely used method to incorporate subgrid-scale pro-

cesses in the horizontal eddy viscosity is that proposed by Smagorinsky (1964):

A = ∆x ∆y

√

(

∂u

∂x
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+
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∂v

∂y
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+
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∂v

∂x
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, (4.10)

in which ∆x and ∆y are the local grid dimensions. Because such subgrid-scale parameteri-
zation is meant to represent physical processes, it ought to obey certain symmetry properties,

notably invariance with respect to rotation of the coordinate system in the horizontal plane.

An appropriate formulation for A ought therefore to be expressed solely in terms of the ro-

tational invariants of the tensor formed by the velocity derivatives. One should note that the

preceding formulation unfortunately does not satisfy this condition. Nonetheless it is often

used in numerical models.
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For typical geophysical flows, this dynamic pressure is much smaller than the basic hydro-

static pressure due to the weight of the fluid.

Although horizontal and vertical dissipation due to turbulent and subgrid-scale processes

is retained in the equation (its last three terms), it cannot dominate the Coriolis force in

geophysical flows, which ought to remain among the dominant terms. This implies

AU

L2
and

νEU

H2
! ΩU. (4.17)

Similar considerations apply to the y–momentum equation (4.7b). But, the vertical mo-
mentum equation (4.7c) may be subjected to additional simplifications. Its various terms

scale sequentially as

W

T
,
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L
,
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L
,

W 2

H
, ΩU ,

P

ρ0H
,

g∆ρ

ρ0

,
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L2
,
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L2
,

νEW

H2
.

The first term (W/T ) cannot exceed ΩW , which is itself much less than ΩU , by virtue of
(4.11) and (4.15). The next three terms are also much smaller than ΩU , this time because
of (4.12), (4.14) and (4.15). Thus, the first four terms may all be neglected compared to the

fifth. But, this fifth term is itself quite small. Its ratio to the first term on the right-hand side

is

ρ0ΩHU

P
∼

H

L
,

which, according to (4.16) and (4.13) is much less than one.

Finally, the last three terms are small. WhenW is substituted for U in (4.17), we have

AW

L2
and

νEW

H2
! ΩW " ΩU. (4.18)

Thus, the last three terms on the right-hand side of the equation are much less than the fifth

term on the left, which was already found to be very small. In summary, only two terms

remain, and the vertical-momentum balance reduces to the simple hydrostatic balance

0 = −
1

ρ0

∂p

∂z
−

gρ

ρ0

. (4.19)

In the absence of stratification (density perturbation ρ nil), the next term in line that

should be considered as a possible balance to the pressure gradient (1/ρ0)(∂p/∂z) is f∗u.
However, under such balance, the vertical variation of the pressure p would be given by the
vertical integration of ρ0f∗u and its scale be ρ0ΩHU . Since this is much less than the already
established pressure scale (4.16), it is negligible, and we conclude that the vertical variation

of p is very weak. In other words, p is nearly z–independent in the absence of stratification:

0 = −
1

ρ0

∂p

∂z
. (4.20)

So, the hydrostatic balance (4.19) continues to hold in the limit ρ → 0.
Since the pressure p is already a small perturbation to a much larger pressure, itself in

hydrostatic balance, we conclude that geophysical flows tend to be fully hydrostatic even in

4.3. SCALES 97

For typical geophysical flows, this dynamic pressure is much smaller than the basic hydro-

static pressure due to the weight of the fluid.

Although horizontal and vertical dissipation due to turbulent and subgrid-scale processes

is retained in the equation (its last three terms), it cannot dominate the Coriolis force in

geophysical flows, which ought to remain among the dominant terms. This implies

AU

L2
and

νEU

H2
! ΩU. (4.17)

Similar considerations apply to the y–momentum equation (4.7b). But, the vertical mo-
mentum equation (4.7c) may be subjected to additional simplifications. Its various terms

scale sequentially as

W

T
,

UW

L
,

UW

L
,

W 2

H
, ΩU ,

P

ρ0H
,

g∆ρ

ρ0

,
AW

L2
,

AW

L2
,

νEW

H2
.

The first term (W/T ) cannot exceed ΩW , which is itself much less than ΩU , by virtue of
(4.11) and (4.15). The next three terms are also much smaller than ΩU , this time because
of (4.12), (4.14) and (4.15). Thus, the first four terms may all be neglected compared to the

fifth. But, this fifth term is itself quite small. Its ratio to the first term on the right-hand side

is

ρ0ΩHU

P
∼

H

L
,

which, according to (4.16) and (4.13) is much less than one.

Finally, the last three terms are small. WhenW is substituted for U in (4.17), we have

AW

L2
and

νEW

H2
! ΩW " ΩU. (4.18)

Thus, the last three terms on the right-hand side of the equation are much less than the fifth

term on the left, which was already found to be very small. In summary, only two terms

remain, and the vertical-momentum balance reduces to the simple hydrostatic balance

0 = −
1

ρ0

∂p

∂z
−

gρ

ρ0

. (4.19)

In the absence of stratification (density perturbation ρ nil), the next term in line that

should be considered as a possible balance to the pressure gradient (1/ρ0)(∂p/∂z) is f∗u.
However, under such balance, the vertical variation of the pressure p would be given by the
vertical integration of ρ0f∗u and its scale be ρ0ΩHU . Since this is much less than the already
established pressure scale (4.16), it is negligible, and we conclude that the vertical variation

of p is very weak. In other words, p is nearly z–independent in the absence of stratification:

0 = −
1

ρ0

∂p

∂z
. (4.20)

So, the hydrostatic balance (4.19) continues to hold in the limit ρ → 0.
Since the pressure p is already a small perturbation to a much larger pressure, itself in

hydrostatic balance, we conclude that geophysical flows tend to be fully hydrostatic even in

4.3. SCALES 97

For typical geophysical flows, this dynamic pressure is much smaller than the basic hydro-

static pressure due to the weight of the fluid.

Although horizontal and vertical dissipation due to turbulent and subgrid-scale processes

is retained in the equation (its last three terms), it cannot dominate the Coriolis force in

geophysical flows, which ought to remain among the dominant terms. This implies

AU

L2
and

νEU

H2
! ΩU. (4.17)

Similar considerations apply to the y–momentum equation (4.7b). But, the vertical mo-
mentum equation (4.7c) may be subjected to additional simplifications. Its various terms

scale sequentially as

W

T
,

UW

L
,

UW

L
,

W 2

H
, ΩU ,

P

ρ0H
,

g∆ρ

ρ0

,
AW

L2
,

AW

L2
,

νEW

H2
.

The first term (W/T ) cannot exceed ΩW , which is itself much less than ΩU , by virtue of
(4.11) and (4.15). The next three terms are also much smaller than ΩU , this time because
of (4.12), (4.14) and (4.15). Thus, the first four terms may all be neglected compared to the

fifth. But, this fifth term is itself quite small. Its ratio to the first term on the right-hand side

is

ρ0ΩHU

P
∼

H

L
,

which, according to (4.16) and (4.13) is much less than one.

Finally, the last three terms are small. WhenW is substituted for U in (4.17), we have

AW

L2
and

νEW

H2
! ΩW " ΩU. (4.18)

Thus, the last three terms on the right-hand side of the equation are much less than the fifth

term on the left, which was already found to be very small. In summary, only two terms

remain, and the vertical-momentum balance reduces to the simple hydrostatic balance

0 = −
1

ρ0

∂p

∂z
−

gρ

ρ0

. (4.19)

In the absence of stratification (density perturbation ρ nil), the next term in line that

should be considered as a possible balance to the pressure gradient (1/ρ0)(∂p/∂z) is f∗u.
However, under such balance, the vertical variation of the pressure p would be given by the
vertical integration of ρ0f∗u and its scale be ρ0ΩHU . Since this is much less than the already
established pressure scale (4.16), it is negligible, and we conclude that the vertical variation

of p is very weak. In other words, p is nearly z–independent in the absence of stratification:

0 = −
1

ρ0

∂p

∂z
. (4.20)

So, the hydrostatic balance (4.19) continues to hold in the limit ρ → 0.
Since the pressure p is already a small perturbation to a much larger pressure, itself in

hydrostatic balance, we conclude that geophysical flows tend to be fully hydrostatic even in

4.3. SCALES 97

For typical geophysical flows, this dynamic pressure is much smaller than the basic hydro-

static pressure due to the weight of the fluid.

Although horizontal and vertical dissipation due to turbulent and subgrid-scale processes

is retained in the equation (its last three terms), it cannot dominate the Coriolis force in

geophysical flows, which ought to remain among the dominant terms. This implies

AU

L2
and

νEU

H2
! ΩU. (4.17)

Similar considerations apply to the y–momentum equation (4.7b). But, the vertical mo-
mentum equation (4.7c) may be subjected to additional simplifications. Its various terms

scale sequentially as

W

T
,

UW

L
,

UW

L
,

W 2

H
, ΩU ,

P

ρ0H
,

g∆ρ

ρ0

,
AW

L2
,

AW

L2
,

νEW

H2
.

The first term (W/T ) cannot exceed ΩW , which is itself much less than ΩU , by virtue of
(4.11) and (4.15). The next three terms are also much smaller than ΩU , this time because
of (4.12), (4.14) and (4.15). Thus, the first four terms may all be neglected compared to the

fifth. But, this fifth term is itself quite small. Its ratio to the first term on the right-hand side

is

ρ0ΩHU

P
∼

H

L
,

which, according to (4.16) and (4.13) is much less than one.

Finally, the last three terms are small. WhenW is substituted for U in (4.17), we have

AW

L2
and

νEW

H2
! ΩW " ΩU. (4.18)

Thus, the last three terms on the right-hand side of the equation are much less than the fifth

term on the left, which was already found to be very small. In summary, only two terms

remain, and the vertical-momentum balance reduces to the simple hydrostatic balance

0 = −
1

ρ0

∂p

∂z
−

gρ

ρ0

. (4.19)

In the absence of stratification (density perturbation ρ nil), the next term in line that

should be considered as a possible balance to the pressure gradient (1/ρ0)(∂p/∂z) is f∗u.
However, under such balance, the vertical variation of the pressure p would be given by the
vertical integration of ρ0f∗u and its scale be ρ0ΩHU . Since this is much less than the already
established pressure scale (4.16), it is negligible, and we conclude that the vertical variation

of p is very weak. In other words, p is nearly z–independent in the absence of stratification:

0 = −
1

ρ0

∂p

∂z
. (4.20)

So, the hydrostatic balance (4.19) continues to hold in the limit ρ → 0.
Since the pressure p is already a small perturbation to a much larger pressure, itself in

hydrostatic balance, we conclude that geophysical flows tend to be fully hydrostatic even in

4.3. SCALES 97

For typical geophysical flows, this dynamic pressure is much smaller than the basic hydro-

static pressure due to the weight of the fluid.

Although horizontal and vertical dissipation due to turbulent and subgrid-scale processes

is retained in the equation (its last three terms), it cannot dominate the Coriolis force in

geophysical flows, which ought to remain among the dominant terms. This implies

AU

L2
and

νEU

H2
! ΩU. (4.17)

Similar considerations apply to the y–momentum equation (4.7b). But, the vertical mo-
mentum equation (4.7c) may be subjected to additional simplifications. Its various terms

scale sequentially as

W

T
,

UW

L
,

UW

L
,

W 2

H
, ΩU ,

P

ρ0H
,

g∆ρ

ρ0

,
AW

L2
,

AW

L2
,

νEW

H2
.

The first term (W/T ) cannot exceed ΩW , which is itself much less than ΩU , by virtue of
(4.11) and (4.15). The next three terms are also much smaller than ΩU , this time because
of (4.12), (4.14) and (4.15). Thus, the first four terms may all be neglected compared to the

fifth. But, this fifth term is itself quite small. Its ratio to the first term on the right-hand side

is

ρ0ΩHU

P
∼

H

L
,

which, according to (4.16) and (4.13) is much less than one.

Finally, the last three terms are small. WhenW is substituted for U in (4.17), we have

AW

L2
and

νEW

H2
! ΩW " ΩU. (4.18)

Thus, the last three terms on the right-hand side of the equation are much less than the fifth

term on the left, which was already found to be very small. In summary, only two terms

remain, and the vertical-momentum balance reduces to the simple hydrostatic balance

0 = −
1

ρ0

∂p

∂z
−

gρ

ρ0

. (4.19)

In the absence of stratification (density perturbation ρ nil), the next term in line that

should be considered as a possible balance to the pressure gradient (1/ρ0)(∂p/∂z) is f∗u.
However, under such balance, the vertical variation of the pressure p would be given by the
vertical integration of ρ0f∗u and its scale be ρ0ΩHU . Since this is much less than the already
established pressure scale (4.16), it is negligible, and we conclude that the vertical variation

of p is very weak. In other words, p is nearly z–independent in the absence of stratification:
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So, the hydrostatic balance (4.19) continues to hold in the limit ρ → 0.
Since the pressure p is already a small perturbation to a much larger pressure, itself in

hydrostatic balance, we conclude that geophysical flows tend to be fully hydrostatic even in
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However, under such balance, the vertical variation of the pressure p would be given by the
vertical integration of ρ0f∗u and its scale be ρ0ΩHU . Since this is much less than the already
established pressure scale (4.16), it is negligible, and we conclude that the vertical variation

of p is very weak. In other words, p is nearly z–independent in the absence of stratification:
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So, the hydrostatic balance (4.19) continues to hold in the limit ρ → 0.
Since the pressure p is already a small perturbation to a much larger pressure, itself in

hydrostatic balance, we conclude that geophysical flows tend to be fully hydrostatic even in
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However, under such balance, the vertical variation of the pressure p would be given by the
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So, the hydrostatic balance (4.19) continues to hold in the limit ρ → 0.
Since the pressure p is already a small perturbation to a much larger pressure, itself in

hydrostatic balance, we conclude that geophysical flows tend to be fully hydrostatic even in
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the presence of substantial motions2. Looking back, we note that the main reason behind this

reduction is the strong geometric disparity of geophysical flows (H ! L).

In rare instances when this disparity between horizontal and vertical scales does not exist,

such as in convection plumes and short internal waves, the hydrostatic approximation ceases

to hold and the vertical-momentum balance includes a three-way balance between vertical

acceleration, pressure gradient and buoyancy.

4.4 Recapitulation of equations governing geophysical flows

The Boussinesq approximation performed in the previous chapter and the preceding devel-

opments have greatly simplified the equations. We recapitulate them here.

x −momentum:
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv =

−
1

ρ0

∂p

∂x
+

∂

∂x

(

A
∂u

∂x

)

+
∂

∂y

(

A
∂u

∂y

)

+
∂

∂z

(

νE
∂u

∂z

)

(4.21a)

y −momentum:
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu =

−
1

ρ0

∂p

∂y
+

∂

∂x

(

A
∂v

∂x

)

+
∂

∂y

(

A
∂v

∂y

)

+
∂

∂z

(

νE
∂v

∂z

)

(4.21b)

z −momentum: 0 = −
∂p

∂z
− ρg (4.21c)

continuity:
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (4.21d)

energy:
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
=

∂

∂x

(

A
∂ρ

∂x

)

+
∂

∂y

(

A
∂ρ

∂y

)

+
∂

∂z

(

κE
∂ρ

∂z

)

, (4.21e)

where the reference density ρ0 and the gravitational acceleration g are constant coefficients,
the Coriolis parameter f = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE and κE may taken as constants or functions

of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
called primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations

2According to Nebeker (1995, page 51), the scientist deserving credit for the hydrostatic balance in geophysical

flows is Alexis Clairaut (1713–1765).

Primitive Equations describing motions of geophysical flows


