
Ocean Modeling - EAS 8803

We model the ocean on a rotating 
planet

Rotation effects are considered 
through the Coriolis and 
Centrifugal Force

The Coriolis Force arises because 
our reference frame (the Earth) is 
rotating

The Coriolis Force is the source 
of many interesting geophysical 
processes

Chapter 2

rotation
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Figure 2-1 Fixed (X, Y ) and rotating
(x, y) frameworks of reference.

plane are related by

x = + X cosΩt + Y sin Ωt (2.3a)

y = − X sin Ωt + Y cosΩt. (2.3b)

The first time derivative of the preceding expressions yields

dx

dt
= +

dX

dt
cosΩt +

dY

dt
sin Ωt

+Ωy︷ ︸︸ ︷
− ΩX sinΩt + ΩY cosΩt (2.4a)

dy

dt
= −

dX

dt
sin Ωt +

dY

dt
cosΩt − ΩX cosΩt − ΩY sin Ωt︸ ︷︷ ︸

−Ωx

. (2.4b)

The quantities dx/dt and dy/dt give the rates of change of the coordinates relative to the
moving frame as time evolves. They are thus the components of the relative velocity:

u =
dx

dt
i +

dy

dt
j = ui + vj. (2.5)

Similarly, dX/dt and dY/dt give the rates of change of the absolute coordinates and form
the absolute velocity:

U =
dX

dt
I +

dY

dt
J.

Writing the absolute velocity in terms of the rotating unit vectors, we obtain [using (2.2)]

U =

(
dX

dt
cosΩt +

dY

dt
sin Ωt

)
i +

(
−

dX

dt
sin Ωt +

dY

dt
cosΩt

)
j

= U i + V j. (2.6)
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plane are related by

x = + X cosΩt + Y sin Ωt (2.3a)

y = − X sin Ωt + Y cosΩt. (2.3b)

The first time derivative of the preceding expressions yields

dx

dt
= +

dX

dt
cosΩt +

dY

dt
sin Ωt
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− ΩX sinΩt + ΩY cosΩt (2.4a)
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dt
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dt
cosΩt − ΩX cosΩt − ΩY sin Ωt︸ ︷︷ ︸

−Ωx
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The quantities dx/dt and dy/dt give the rates of change of the coordinates relative to the
moving frame as time evolves. They are thus the components of the relative velocity:

u =
dx

dt
i +

dy

dt
j = ui + vj. (2.5)

Similarly, dX/dt and dY/dt give the rates of change of the absolute coordinates and form
the absolute velocity:

U =
dX

dt
I +

dY

dt
J.

Writing the absolute velocity in terms of the rotating unit vectors, we obtain [using (2.2)]

U =

(
dX

dt
cosΩt +

dY

dt
sin Ωt

)
i +

(
−

dX

dt
sin Ωt +

dY

dt
cosΩt

)
j

= U i + V j. (2.6)

Fixed reference

Rotating 
reference

Angular Velocity



A rotating framework - The velocity (1st derivative)
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plane are related by

x = + X cosΩt + Y sin Ωt (2.3a)

y = − X sin Ωt + Y cosΩt. (2.3b)

The first time derivative of the preceding expressions yields

dx

dt
= +

dX

dt
cosΩt +
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dt
sin Ωt

+Ωy︷ ︸︸ ︷
− ΩX sinΩt + ΩY cosΩt (2.4a)
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= −
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dt
sin Ωt +

dY

dt
cosΩt − ΩX cosΩt − ΩY sin Ωt︸ ︷︷ ︸

−Ωx

. (2.4b)

The quantities dx/dt and dy/dt give the rates of change of the coordinates relative to the
moving frame as time evolves. They are thus the components of the relative velocity:

u =
dx

dt
i +

dy

dt
j = ui + vj. (2.5)

Similarly, dX/dt and dY/dt give the rates of change of the absolute coordinates and form
the absolute velocity:

U =
dX

dt
I +

dY

dt
J.

Writing the absolute velocity in terms of the rotating unit vectors, we obtain [using (2.2)]

U =

(
dX

dt
cosΩt +

dY

dt
sin Ωt

)
i +

(
−

dX

dt
sin Ωt +

dY

dt
cosΩt

)
j

= U i + V j. (2.6)

Absolute 
Velocity

Relative Velocity
change of the 
coordinate relative to 
the moving frame
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plane are related by

x = + X cosΩt + Y sin Ωt (2.3a)
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plane are related by

x = + X cosΩt + Y sin Ωt (2.3a)

y = − X sin Ωt + Y cosΩt. (2.3b)
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plane are related by

x = + X cosΩt + Y sin Ωt (2.3a)

y = − X sin Ωt + Y cosΩt. (2.3b)

The first time derivative of the preceding expressions yields

dx
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The quantities dx/dt and dy/dt give the rates of change of the coordinates relative to the
moving frame as time evolves. They are thus the components of the relative velocity:

u =
dx

dt
i +

dy

dt
j = ui + vj. (2.5)

Similarly, dX/dt and dY/dt give the rates of change of the absolute coordinates and form
the absolute velocity:

U =
dX

dt
I +

dY

dt
J.

Writing the absolute velocity in terms of the rotating unit vectors, we obtain [using (2.2)]

U =

(
dX

dt
cosΩt +

dY

dt
sin Ωt

)
i +

(
−

dX

dt
sin Ωt +

dY

dt
cosΩt

)
j

= U i + V j. (2.6)

U

V

u

v
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Thus, dX/dt and dY/dt are the components of the absolute velocityU in the inertial frame,

whereas U and V are the components of the same vector in the rotating frame. Use of (2.4)

and (2.3) in the preceding expression yields the following relations between absolute and

relative velocities:

U = u − Ωy, V = v + Ωx. (2.7)

These equalities simply state that the absolute velocity is the relative velocity plus the en-

training velocity due to the rotation of the reference framework.

A second derivative with respect to time provides in a similar manner:

d2x

dt2
=

(
d2X

dt2
cosΩt +

d2Y

dt2
sin Ωt

)
+ 2Ω

(
−

dX

dt
sin Ωt +

dY

dt
cosΩt

)

︸ ︷︷ ︸
V

− Ω2 (X cosΩt + Y sin Ωt)︸ ︷︷ ︸
x

(2.8a)

d2y

dt2
=

(
−

d2X

dt2
sin Ωt +

d2Y

dt2
cosΩt

)
− 2Ω

(
dX

dt
cosΩt +

dY

dt
sin Ωt

)

︸ ︷︷ ︸
U

− Ω2 (− X sin Ωt + Y cosΩt)︸ ︷︷ ︸
y

. (2.8b)

Expressed in terms of the relative and absolute accelerations

a =
d2x

dt2
i +

d2y

dt2
j =

du

dt
i +

dv

dt
j = ai + bj

A =
d2X

dt2
I +

d2Y

dt2
J

=

(
d2X

dt2
cosΩt +

d2Y

dt2
sin Ωt

)
i +

(
d2Y

dt2
cosΩt −

d2X

dt2
sin Ωt

)
j = Ai + Bj,

expressions (2.8) condense to

a = A + 2ΩV − Ω2x, b = B − 2ΩU − Ω2y.

In analogy with the absolute velocity vector, d2X/dt2 and d2Y/dt2 are the components of
the absolute accelerationA in the inertial frame, whereasA and B are the components of the

same vector in the rotating frame. The absolute acceleration components, necessary later to

formulate Newton’s law, are obtained by solving for A and B and using (2.7):

A = a − 2Ωv − Ω2x, B = b + 2Ωu − Ω2y. (2.9)

We now see that the difference between absolute and relative acceleration consists of two

contributions. The first, proportional to Ω and to the relative velocity, is called the Coriolis

acceleration; the other, proportional to Ω2 and to the coordinates, is called the centrifugal

acceleration. When placed on the other side of the equality in Newton’s law, these terms

Relation between absolute and relative velocity

!y

!"x

entraining velocity 
due to rotation

relative 
velocity

+
absolute 
velocity

=

A rotating framework - The velocity (1st derivative)
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Thus, dX/dt and dY/dt are the components of the absolute velocityU in the inertial frame,

whereas U and V are the components of the same vector in the rotating frame. Use of (2.4)
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dt2
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y
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Expressed in terms of the relative and absolute accelerations
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dv
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)
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(
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d2X

dt2
sin Ωt

)
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expressions (2.8) condense to

a = A + 2ΩV − Ω2x, b = B − 2ΩU − Ω2y.

In analogy with the absolute velocity vector, d2X/dt2 and d2Y/dt2 are the components of
the absolute accelerationA in the inertial frame, whereasA and B are the components of the

same vector in the rotating frame. The absolute acceleration components, necessary later to

formulate Newton’s law, are obtained by solving for A and B and using (2.7):

A = a − 2Ωv − Ω2x, B = b + 2Ωu − Ω2y. (2.9)

We now see that the difference between absolute and relative acceleration consists of two

contributions. The first, proportional to Ω and to the relative velocity, is called the Coriolis

acceleration; the other, proportional to Ω2 and to the coordinates, is called the centrifugal

acceleration. When placed on the other side of the equality in Newton’s law, these terms
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Thus, dX/dt and dY/dt are the components of the absolute velocityU in the inertial frame,
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Expressed in terms of the relative and absolute accelerations

a =
d2x

dt2
i +

d2y

dt2
j =

du

dt
i +

dv

dt
j = ai + bj

A =
d2X

dt2
I +

d2Y

dt2
J

=

(
d2X

dt2
cosΩt +

d2Y

dt2
sin Ωt

)
i +

(
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dt2
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dt2
sin Ωt

)
j = Ai + Bj,

expressions (2.8) condense to

a = A + 2ΩV − Ω2x, b = B − 2ΩU − Ω2y.

In analogy with the absolute velocity vector, d2X/dt2 and d2Y/dt2 are the components of
the absolute accelerationA in the inertial frame, whereasA and B are the components of the

same vector in the rotating frame. The absolute acceleration components, necessary later to

formulate Newton’s law, are obtained by solving for A and B and using (2.7):

A = a − 2Ωv − Ω2x, B = b + 2Ωu − Ω2y. (2.9)

We now see that the difference between absolute and relative acceleration consists of two

contributions. The first, proportional to Ω and to the relative velocity, is called the Coriolis

acceleration; the other, proportional to Ω2 and to the coordinates, is called the centrifugal

acceleration. When placed on the other side of the equality in Newton’s law, these terms

use this equality:

Relation between absolute and relative velocity
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Thus, dX/dt and dY/dt are the components of the absolute velocityU in the inertial frame,

whereas U and V are the components of the same vector in the rotating frame. Use of (2.4)

and (2.3) in the preceding expression yields the following relations between absolute and

relative velocities:

U = u − Ωy, V = v + Ωx. (2.7)

These equalities simply state that the absolute velocity is the relative velocity plus the en-

training velocity due to the rotation of the reference framework.

A second derivative with respect to time provides in a similar manner:

d2x

dt2
=

(
d2X

dt2
cosΩt +

d2Y

dt2
sin Ωt
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dt2
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dt2
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. (2.8b)

Expressed in terms of the relative and absolute accelerations

a =
d2x

dt2
i +

d2y

dt2
j =

du

dt
i +

dv

dt
j = ai + bj

A =
d2X

dt2
I +

d2Y

dt2
J

=

(
d2X

dt2
cosΩt +

d2Y

dt2
sin Ωt

)
i +

(
d2Y

dt2
cosΩt −

d2X

dt2
sin Ωt

)
j = Ai + Bj,

expressions (2.8) condense to

a = A + 2ΩV − Ω2x, b = B − 2ΩU − Ω2y.

In analogy with the absolute velocity vector, d2X/dt2 and d2Y/dt2 are the components of
the absolute accelerationA in the inertial frame, whereasA and B are the components of the

same vector in the rotating frame. The absolute acceleration components, necessary later to

formulate Newton’s law, are obtained by solving for A and B and using (2.7):

A = a − 2Ωv − Ω2x, B = b + 2Ωu − Ω2y. (2.9)

We now see that the difference between absolute and relative acceleration consists of two

contributions. The first, proportional to Ω and to the relative velocity, is called the Coriolis

acceleration; the other, proportional to Ω2 and to the coordinates, is called the centrifugal

acceleration. When placed on the other side of the equality in Newton’s law, these terms

use this equality:
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can be assimilated to forces (per unit mass). The centrifugal force acts as an outward pull,

whereas the Coriolis force depends on the direction and magnitude of the relative velocity.

Formally, the preceding results could have been derived in a vector form. Defining the

vector rotation

Ω = Ωk,

where k is the unit vector in the third dimension (which is common to both systems of refer-
ence), we can write (2.7) and (2.9) as

U = u + Ω × r

A = a + 2Ω × u + Ω × (Ω × r), (2.10)

where× indicates the vectorial product. This implies that taking a time derivative of a vector
with respect to the inertial framework is equivalent to applying the operator

d

dt
+ Ω ×

in the rotating framework of reference.

A very detailed exposition of the Coriolis and centrifugal accelerations can be found in the

book by Stommel and Moore (1989). In addition, the reader will find a historical perspective

in Ripa (1994).

2.2 Unimportance of the centrifugal force

Unlike the Coriolis force, which is proportional to the velocity, the centrifugal force depends

solely on the rotation rate and the distance of the particle to the rotation axis. Even at rest

with respect to the rotating planet, particles experience an outward pull. Yet, on the earth as

on other celestial bodies, no matter goes flying out to space. How is that possible? Obviously,

gravity keeps everything together.

In the absence of rotation, gravitational forces keep the matter together to form a spherical

body (with the denser materials at the center and the lighter ones on the periphery). The

outward pull caused by the centrifugal force distorts this spherical equilibrium, and the planet

assumes a slightly flattened shape. The degree of flattening is precisely that necessary to keep

the planet in equilibrium for its rotation rate.

The situation is depicted on Figure 2-2. By its nature, the centrifugal force is directed

outward, perpendicular to the axis of rotation, whereas the gravitational force points toward

the planet’s center. The resulting force assumes an intermediate direction, and this direction

is precisely the direction of the local vertical. Indeed, under this condition a loose particle

would have no tendency of its own to fly away from the planet. In other words, every particle

at rest on the surface will remain at rest unless it is subjected to additional forces.

The flattening of the earth, as well as that of other celestial bodies in rotation, is important

to neutralize the centrifugal force. But, this is not to say that it greatly distorts the geometry.

On the earth, for example, the distortion is very slight, because gravity by far exceeds the
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Figure 2-2 How the flattening of the

rotating earth (grossly exaggerated in

this drawing) causes the gravitational

and centrifugal forces to combine into

a net force aligned with the local verti-

cal, so that equilibrium is reached.

centrifugal force; the terrestrial equatorial radius is 6378 km, slightly greater than its polar

radius of 6357 km. The shape of the rotating oblate earth is treated in detail by Stommel and

Moore (1989) and by Ripa (1994).

For the sake of simplicity in all that follows, we will call the gravitational force the resul-

tant force, aligned with the vertical and equal to the sum of the true gravitational force and

the centrifugal force. Due to inhomogeneous distributions of rocks and magma on earth, the

true gravitational force is not directed towards the center of the earth. For the same reason as

the centrifugal force has rendered the earth surface oblate, this inhomogeneous true gravity

has deformed the earth surface until the total (apparent) gravitational force is perpendicular to

it. The surface so obtained is called a geoid and can be interpreted as the surface of an ocean

at rest (with a continuous extension on land). This virtual continuous surface is perpendic-

ular at every point to the direction of gravity (including the centrifugal force) and forms an

equipotential surface, meaning that a particle moving on that surface undergoes no change in

potential energy. The value of this potential energy per unit mass is called the geopotential,

and the geoid is thus a surface of constant geopotential. This surface will be the reference

surface from which land elevations, (dynamic) sea surface elevations and ocean depth will be

defined. For more on the geoid, the reader is referred to Robinson (2004), Chapter 11.

In a rotating laboratory tank, the situation is similar but not identical. The rotation causes

a displacement of the fluid toward the periphery. This proceeds until the resulting inward

pressure gradient prevents any further displacement. Equilibrium then requires that at any

point on the surface, the downward gravitational force and the outward centrifugal force

combine into a resultant force normal to the surface (Figure 2-3), so that the surface becomes

an equipotential surface. Although the surface curvature is crucial in neutralizing the cen-

trifugal force, the vertical displacements are rather small. In a tank rotating at the rate of one

revolution every two seconds (30 rpm) and 40 cm in diameter, the difference in fluid height

between the rim and the center is a modest 2 cm.

geoid
an equipotential surface
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Figure 2-3 Equilibrium surface of a

rotating fluid in an open container. The

surface slope is such that gravitational

and centrifugal forces combine into a

net force everywhere aligned with the

local normal to the surface.

2.3 Free motion on a rotating plane

The preceding argument allows us to combine the centrifugal force with the gravitational

force, but the Coriolis force remains. To have an idea of what this force can cause, let us

examine the motion of a free particle, that is, a particle not subject to any external force

other than gravity, the “horizontal” component of which is cancelled by the centrifugal force

associated with the rotating earth. On the plane attached to the North Pole of the rotating

earth no external horizontal forces is thus present.

If the particle is free of any force, its acceleration in the inertial frame is nil, by New-

ton’s law. According to (2.9), with the centrifugal-acceleration terms no longer present, the

equations governing the velocity components of the particle are

du

dt
− 2Ωv = 0,

dv

dt
+ 2Ωu = 0. (2.11)

The general solution to this system of linear equations is

u = V sin(ft + φ), v = V cos(ft + φ), (2.12)

where f = 2Ω, called the Coriolis parameter, has been introduced for convenience, and V
and φ are two arbitrary constants of integration. Without loss of generality, V can always be

chosen as nonnegative. (Do not confuse this constant V with the y–component of the absolute
velocity introduced in Section 2.1.) A first result is that the particle speed (u2+v2)1/2 remains

unchanged in time. It is equal to V , a constant determined by the initial conditions.
Although the speed remains unchanged, the components u and v do depend on time, im-

plying a change in direction. To document this curving effect, it is most instructive to derive

the trajectory of the particle. The coordinates of the particle position change, by definition of
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The preceding argument allows us to combine the centrifugal force with the gravitational

force, but the Coriolis force remains. To have an idea of what this force can cause, let us

examine the motion of a free particle, that is, a particle not subject to any external force

other than gravity, the “horizontal” component of which is cancelled by the centrifugal force

associated with the rotating earth. On the plane attached to the North Pole of the rotating

earth no external horizontal forces is thus present.

If the particle is free of any force, its acceleration in the inertial frame is nil, by New-

ton’s law. According to (2.9), with the centrifugal-acceleration terms no longer present, the

equations governing the velocity components of the particle are

du

dt
− 2Ωv = 0,

dv

dt
+ 2Ωu = 0. (2.11)

The general solution to this system of linear equations is

u = V sin(ft + φ), v = V cos(ft + φ), (2.12)

where f = 2Ω, called the Coriolis parameter, has been introduced for convenience, and V
and φ are two arbitrary constants of integration. Without loss of generality, V can always be

chosen as nonnegative. (Do not confuse this constant V with the y–component of the absolute
velocity introduced in Section 2.1.) A first result is that the particle speed (u2+v2)1/2 remains

unchanged in time. It is equal to V , a constant determined by the initial conditions.
Although the speed remains unchanged, the components u and v do depend on time, im-

plying a change in direction. To document this curving effect, it is most instructive to derive

the trajectory of the particle. The coordinates of the particle position change, by definition of
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2.3 Free motion on a rotating plane

The preceding argument allows us to combine the centrifugal force with the gravitational

force, but the Coriolis force remains. To have an idea of what this force can cause, let us

examine the motion of a free particle, that is, a particle not subject to any external force

other than gravity, the “horizontal” component of which is cancelled by the centrifugal force

associated with the rotating earth. On the plane attached to the North Pole of the rotating

earth no external horizontal forces is thus present.

If the particle is free of any force, its acceleration in the inertial frame is nil, by New-

ton’s law. According to (2.9), with the centrifugal-acceleration terms no longer present, the

equations governing the velocity components of the particle are

du

dt
− 2Ωv = 0,

dv

dt
+ 2Ωu = 0. (2.11)

The general solution to this system of linear equations is

u = V sin(ft + φ), v = V cos(ft + φ), (2.12)

where f = 2Ω, called the Coriolis parameter, has been introduced for convenience, and V
and φ are two arbitrary constants of integration. Without loss of generality, V can always be

chosen as nonnegative. (Do not confuse this constant V with the y–component of the absolute
velocity introduced in Section 2.1.) A first result is that the particle speed (u2+v2)1/2 remains

unchanged in time. It is equal to V , a constant determined by the initial conditions.
Although the speed remains unchanged, the components u and v do depend on time, im-

plying a change in direction. To document this curving effect, it is most instructive to derive

the trajectory of the particle. The coordinates of the particle position change, by definition of

NOTE: the speed does  not change with time 
yet u and v do change with time!

changes in u and v imply change in direction.

Inertial Oscillations



Trajectory of inertial oscillations
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the vector velocity, according to dx/dt = u and dy/dt = v, and a second time integration
provides

x = x0 −
V

f
cos(ft + φ) (2.13a)

y = y0 +
V

f
sin(ft + φ), (2.13b)

where x0 and y0 are additional constants of integration to be determined from the initial

coordinates of the particle. From the last relations, it follows directly that

(x − x0)
2 + (y − y0)

2 =

(
V

f

)2

. (2.14)

This implies that the trajectory is a circle centered at (x0, y0) and of radius V/|f |. The
situation is depicted on Figure 2-4.
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Figure 2-4 Inertial oscillation of a free

particle on a rotating plane. The or-

bital period is exactly half of the am-

bient revolution period. This figure has

been drawn with a positive Coriolis pa-

rameter, f , representative of the North-
ern Hemisphere. If f were negative (as
in the Southern Hemisphere), the parti-

cle would veer to the left.

In the absence of rotation (f = 0), this radius is infinite, and the particle follows a straight
path, as we could have anticipated. But, in the presence of rotation (f "= 0), the particle

turns constantly. A quick examination of (2.13) reveals that the particle turns to the right

(clockwise) if f is positive or to the left (counterclockwise) if f is negative. In sum, the rule
is that the particle turns in the sense opposite to that of the ambient rotation.

At this point, we may wonder whether this particle rotation is none other than the negative

of the ambient rotation, in such a way as to keep the particle at rest in the absolute frame of

reference. But, there are at least two reasons why this is not so. The first is that the coordinates

of the center of the particle’s circular path are arbitrary and are therefore not required to

coincide with those of the axis of rotation. The second and most compelling reason is that

the two frequencies of rotation are simply not the same: the ambient rotating plane completes

one revolution in a time equal to Ta = 2π/Ω, whereas the particle covers a full circle in a
time equal to Tp = 2π/f = π/Ω, called inertial period. Thus, the particle goes around its
orbit twice as the plane accomplishes a single revolution.
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Figure 2-9 Definition of a local Carte-

sian framework of reference on a spher-

ical earth. The coordinate x is directed
eastward, y northward, and z upward.

du

dt
+ 2 Ω × u,

has the following three components

x :
du

dt
+ 2Ω cosϕ w − 2Ω sin ϕ v (2.20a)

y :
dv

dt
+ 2Ω sin ϕ u (2.20b)

z :
dw

dt
− 2Ω cosϕ u. (2.20c)

With x, y, and z everywhere aligned with the local eastward, northward, and vertical direc-
tions, the coordinate system is curvilinear, and additional terms arise in the components of

the relative acceleration. These terms will be introduced in Section 3.2, only to be quickly

dismissed because of their relatively small size in most instances.

For convenience, we define the quantities

f = 2Ω sinϕ (2.21)

f∗ = 2Ω cosϕ. (2.22)
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du

dt
+ 2 Ω × u,

has the following three components

x :
du

dt
+ 2Ω cosϕ w − 2Ω sin ϕ v (2.20a)

y :
dv

dt
+ 2Ω sin ϕ u (2.20b)

z :
dw

dt
− 2Ω cosϕ u. (2.20c)

With x, y, and z everywhere aligned with the local eastward, northward, and vertical direc-
tions, the coordinate system is curvilinear, and additional terms arise in the components of

the relative acceleration. These terms will be introduced in Section 3.2, only to be quickly

dismissed because of their relatively small size in most instances.

For convenience, we define the quantities

f = 2Ω sinϕ (2.21)

f∗ = 2Ω cosϕ. (2.22)

effective rotation on the sphere

rotation of 
reference frame

projection on 
sphere surface
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The coefficient f is called the Coriolis parameter, whereas f∗ has no traditional name and
will be called here the reciprocal Coriolis parameter. In the Northern Hemisphere, f is
positive; it is zero at the equator and negative in the Southern Hemisphere. In contrast, f∗
is positive in both hemispheres and vanishes at the poles. An examination of the relative

importance of the various terms (Section 4.3) will reveal that, generally, the f–terms are
important, whereas the f∗–terms may be neglected.

Horizontal, unforced motions are described by

du

dt
− fv = 0 (2.23a)

dv

dt
+ fu = 0 (2.23b)

and are still characterized by solution (2.12). The difference resides in the value of f , now
given by (2.21). Thus, inertial oscillations on Earth have periodicities equal to 2π/f =
π/Ω sinϕ, ranging from 12 h at the poles to infinity along the equator. Pure inertial oscilla-
tions are, however, quite rare because of the usual presence of pressure gradients and other

forces. Nonetheless, inertial oscillations are not uncommonly found to contribute to observa-

tions of oceanic currents. An example of such an occurrence, where the inertial oscillations

made up almost the entire signal, was reported by Gustafson and Kullenberg (1936). Cur-

rent measurements in the Baltic Sea showed periodic oscillations about a mean value. When

added to one another to form a so-called progressive vector diagram (Figure 2-10), the cur-

rents distinctly showed a mean drift, on which were superimposed quite regular clockwise

oscillations. The theory of inertial oscillation predicts clockwise rotation in the Northern

Hemisphere with period of 2π/f = π/Ω sin ϕ, or 14 h at the latitude of observations, thus
confirming the interpretation of the observations as inertial oscillations.

2.6 Numerical approach to oscillatory motions

The equations of free motion on a rotating plane (2.11) have been considered in some detail

in Section 2.3, and it is now appropriate to consider their discretization, as the corresponding

terms are part of all numerical models of geophysical flows. Upon introducing the time

increment∆t, an approximation to the components of the velocity will be determined at the
discrete instants tn = n∆t with n = 1, 2, 3, ..., which are denoted ũn = ũ(tn) and ṽn =
ṽ(tn), with tildes used to distinguish the discrete solution from the exact one. The so-called
Euler method based on first-order forward differencing yields the simplest discretization of

equations (2.11):

du

dt
− fv = 0 −→

ũn+1 − ũn

∆t
− f ṽn = 0

dv

dt
+ fu = 0 −→

ṽn+1 − ṽn

∆t
+ fũn = 0.

The latter pair can be cast into a recursive form as follows:

equation of inertial oscillations

these describe the unforced motion

! =
2"
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Figure 2-10 Evidence of inertial os-

cillations in the Baltic Sea, as reported

by Gustafson and Kullenberg (1936).

The plot is a progressive–vector dia-

gram constructed by the successive ad-

dition of velocity measurements at a

fixed location. For weak or uniform

velocities, such a curve approximates

the trajectory that a particle starting at

the point of observation would have

followed during the period of obser-

vation. Numbers indicate days of the

month. Note the persistent veering to

the right, at a period of about 14 hours,

which is the value of 2π/f at that lat-
itude (57.8◦N). [From Gustafson and

Kullenberg, 1936, as adapted by Gill,

1982]

ũn+1 = ũn + f∆t ṽn (2.24a)

ṽn+1 = ṽn − f∆t ũn. (2.24b)

Thus, given initial values ũ0 and ṽ0 at t0, the solution can be computed easily at time t1

ũ1 = ũ0 + f∆t ṽ0 (2.25)

ṽ1 = ṽ0 − f∆t ũ0. (2.26)

Then, by means of the same algorithm, the solution can be obtained iteratively at times t2, t3

and so on (do not confuse the temporal index with an exponent here and in the following).

Clearly, the main advantage of the preceding scheme is its simplicity, but it is not sufficient

to render it acceptable, as we shall soon learn.

To explore the numerical error generated by the Euler method, we carry out Taylor ex-

pansions of the type

ũn+1 = ũn + ∆t

[
dũ

dt

]

t=tn

+
∆t2

2

[
d2ũ

dt2

]

t=tn

+ O(∆t3)
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Euler Method
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and similarly for ṽ to obtain the following expressions from (2.24)

[
dũ

dt
− f ṽ

]

t=tn

= −

[
d2ũ

dt2

]

t=tn

∆t

2
+ O(∆t2) (2.27a)

[
dṽ

dt
+ fũ

]

t=tn

= −

[
d2ṽ

dt2

]

t=tn

∆t

2
+ O(∆t2). (2.27b)

Derivation of (2.27a) with respect to time and use of (2.27b) to eliminate dṽ/dt allow us to
recast (2.27a) into a simpler form, and similarly for (2.27b):

dũn

dt
− f ṽn =

f2∆t

2
ũn + O(∆t2) (2.28a)

dṽn

dt
+ fũn =

f2∆t

2
ṽn + O(∆t2). (2.28b)

Obviously, the numerical scheme mirrors the original equations, except that an additional

term appears in each right-hand side. This additional term takes the form of anti-friction

(friction would have a minus sign instead) and will therefore increase the discrete velocity

over time.

The truncation error of the Euler scheme – the right-hand side of the preceding expres-

sions – tends to zero as ∆t vanishes, which is why the scheme is said to be consistent. The
truncation is on the order of ∆t at the first power and the scheme is therefore said to be
first-order accurate, which is the lowest possible level of accuracy. Nonetheless, this is not

the chief weakness of the present scheme, since we must expect that the introduction of anti-

friction will create an unphysical acceleratation. Indeed, elementary manipulations of the

time-stepping algorithm (2.24) lead to (ũn+1)2 + (ṽn+1)2 = (1+f2∆t2)
{
(ũn)2 + (ṽn)2

}

so that by recursion

‖ ũ‖2 = (ũn)2 + (ṽn)2 = (1 + f2∆t2)n
{
(ũ0)2 + (ṽ0)2

}
. (2.29)

So, although the kinetic energy (directly proportional to the squared norm ‖ũ‖2) of the in-

ertial oscillation must remain constant, as was seen in Section 2.3, the kinetic energy of the

discrete solution increases without bound2 even if the time step ∆t is taken much smaller
than the characteristic time 1/f . Algorithm (2.24) is unstable. Because such a behavior is
not acceptable, we need to formulate an alternative type of discretization.

In our first scheme, the time derivative was taken by going forward from time level tn to
tn+1 and the other terms at tn, and the scheme became a recursive algorithm to calculate the
next values from the current values. Such a discretization is called an explicit scheme. By

contrast, in an implicit scheme, the terms other than the time derivatives are taken at the new

time tn+1 (which is similar to taking a backward difference for the time derivative):

ũn+1 − ũn

∆t
− f ṽn+1 = 0 (2.30a)

ṽn+1 − ṽn

∆t
+ fũn+1 = 0. (2.30b)

2From the context it should be clear that n in (1 + f2∆t2)n is an exponent, whereas in ũn it is the time index.

In the following text, we will not point out this distinction again, leaving it to the reader to verify the context.

Euler Method Implicit

when rigth-hand side is 
at future time


