Ocean Modeling - EAS 8803

rotation

Q We model the ocean on a rotating planet

Q Rotation effects are considered through the Coriolis and Centrifugal ForceThe Coriolis Force arises because our reference frame (the Earth) is rotating

The Coriolis Force is the source of many interesting geophysical processes

Introduction to Geophysical Fluid Dynamics

Physical and Numerical Aspects

Benoit Cushman-Roisin and Jean-Marie Beckers

Academic Press
Chapter 2

A rotating framework - The coordinates

Figure 2-1 Fixed (X, Y) and rotating (x, y) frameworks of reference.

Rotating reference

A rotating framework - The velocity (1st derivative)

$$
\mathbf{u}=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}
$$

$$
\mathbf{U}=\frac{d X}{d t} \mathbf{I}+\frac{d Y}{d t} \mathbf{J}
$$

A rotating framework - The velocity (1st derivative)

Relation between absolute and relative velocity

$$
U=u-\Omega y, \quad V=v+\Omega x
$$

absolute velocity
relative velocity
:---:
due to rotation

A rotating framework - The acceleration (2nd derivative)

A rotating framework - The acceleration (2nd derivative)

Relation between absolute and relative velocity

use this equality:

$$
U=u-\Omega y, \quad V=v+\Omega x .
$$

A rotating framework - The acceleration (2nd derivative)

$$
\frac{d U}{d t}=\frac{d u}{d t}-2 \Omega v-\Omega^{2} x
$$

$$
\frac{d V}{d t}=\frac{d v}{d t}-2 \Omega u-\Omega^{2} y
$$

absolute
acceleration
:---:
acceleration
:---:
acceleration
:---:
acceleration

use this equality:

$$
U=u-\Omega y, \quad V=v+\Omega x .
$$

A rotating framework - The acceleration (2nd derivative)
define vectors: $\quad \mathbf{r}=\left[\begin{array}{l}x \\ y\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}u \\ v\end{array}\right]$

time derivative in rotating frame:

$$
\frac{d}{d t}+\boldsymbol{\Omega} \times
$$

Coriolis vs. Centrifugal Force

$$
\frac{d U}{d t}=\frac{d u}{d t}-2 \Omega v-\Omega^{2} x
$$

Coriolis Force is active only when things move

Centrifugal Force is unimportant for motions

geoid
 an equipotential sufface

Figure 2-2 How the flattening of the rotating earth (grossly exaggerated in this drawing) causes the gravitational and centrifugal forces to combine into a net force aligned with the local vertical , so that equilibrium is reached.

Free Motion on a rotating frame

$$
\begin{aligned}
& \frac{d U}{d t}=\frac{d u}{d t}-2 \Omega v \\
& \frac{d V}{d t}=\frac{d v}{d t}-2 \Omega u
\end{aligned}
$$

Coriolis Force is active only when things move

Free Motion on a rotating frame

$$
\frac{d u}{d t}-2 \Omega v=0, \quad \frac{d v}{d t}+2 \Omega u=0
$$

The general solution to this system of linear equations is

$$
\begin{array}{ll}
u=V \sin (f t+\phi), & v=V \cos (f t+\phi) \\
f=2 \Omega & \text { Inertial Oscillations }
\end{array}
$$

NOTE: the speed does not change with time yet u and v do change with time!
changes in u and v imply change in direction.

Trajectory of inertial oscillations

$$
\begin{aligned}
x & =x_{0}-\frac{V}{f} \cos (f t+\phi) \\
y & =y_{0}+\frac{V}{f} \sin (f t+\phi)
\end{aligned}
$$

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=\left(\frac{V}{f}\right)^{2}
$$

1
this is the equation of a circle with radius

$$
R=\frac{V}{f}
$$

2
period of a complete circle is called inertial period

$$
T_{p}=2 \pi / f
$$

Coriolis acceleration in 3D
effective rotation on the sphere

$$
f=\overbrace{\substack{2 \Omega \\ \text { rotation of } \\ \text { reference frame } \\ \text { projection on } \\ \text { sphere surface }}}^{2 \Omega}
$$

equation of inertial oscillations

$$
\begin{aligned}
& \frac{d u}{d t}-f v=0 \\
& \frac{d v}{d t}+f u=0
\end{aligned}
$$

these describe the unforced motion

Coriolis acceleration in 3D - observations of inertial motions

equation of inertial oscillations

$$
\begin{aligned}
& \frac{d u}{d t}-f v=0 \\
& \frac{d v}{d t}+f u=0
\end{aligned}
$$

these describe the unforced motion

Discretizing the intertial oscillation equations

$$
\begin{gathered}
\text { Euler Method } \\
\frac{d u}{d t}-f v=0 \quad \longrightarrow \begin{array}{|c}
\frac{\tilde{u}^{n+1}-\tilde{u}^{n}}{\Delta t} \\
\frac{d v}{d t}+f u=0 \\
\frac{\tilde{v}^{n+1}-\tilde{v}^{n}}{\Delta t} \\
+f \tilde{u}^{n}=0
\end{array}
\end{gathered}
$$

Euler Method Implicit

$$
\begin{aligned}
& \frac{\tilde{u}^{n+1}-\tilde{u}^{n}}{\Delta t}-f \tilde{v}^{n+1}=0 \\
& \frac{\tilde{v}^{n+1}-\tilde{v}^{n}}{\Delta t}+f \tilde{u}^{n+1}=0
\end{aligned}
$$

when rigth-hand side is
at future time

