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11.2 Static stability
Let us first consider a fluid in static equilibrium. Lack of motion can occur only in the absence
of horizontal forces and thus in the presence of horizontal homogeneity. Stratification is then
purely vertical (Figure 11-1).

h

ρ(z + h)

z ρ(z)

Figure 11-1 When an incompressible
fluid parcel of density ρ(z) is vertically
displaced from level z to level z + h
in a stratified environment, a buoyancy
force appears because of the density
difference ρ(z)−ρ(z+h) between the
particle and the ambient fluid.

It is intuitively obvious that if the heavier fluid parcels are found below the lighter fluid
parcels, the fluid is stable, whereas if heavier parcels lie above lighter ones, the system is apt
to overturn, and the fluid is unstable. Let us now verify this intuition. Take a fluid parcel at a
height z above a certain reference level, where the density is ρ(z), and displace it vertically
to the higher level z + h, where the ambient density is ρ(z + h) (Figure 11-1). If the fluid
is incompressible, our displaced parcel retains its former density despite a slight pressure
change, and at that new level is subject to a net downward force equal to its own weight
minus, by Archimedes’ buoyancy principle, the weight of the displaced fluid, thus

g [ρ(z) − ρ(z + h)] V,

where V is the volume of the parcel. As it is written, this force is positive if it is directed
downward. Newton’s law (mass times acceleration equals upward force) yields

ρ(z) V
d2h

dt2
= g [ρ(z + h) − ρ(z)] V. (11.1)

Now, geophysical fluids are generally only weakly stratified; the density variations, al-
though sufficient to drive or affect motions, are nonetheless relatively small compared to the
average or reference density of the fluid. This remark was the essence of the Boussinesq
approximation (Section 3.7). In the present case, this fact allows us to replace ρ(z) on the
left-hand side of (11.1) by the reference ρ0 and to use a Taylor expansion to approximate the
density difference on the right by

ρ(z + h) − ρ(z) ≃
dρ

dz
h.

After a division by V , equation (11.1) reduces to
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d2h

dt2
−

g

ρ0

dρ

dz
h = 0 , (11.2)

which shows that two cases can arise. The coefficient −(g/ρ0)dρ/dz is either positive or
negative. If it is positive (dρ/dz < 0 , corresponding to a fluid with the greater densities
below the lesser densities), we can define the quantityN2 as

N
2

= −
g

ρ0

dρ

dz
, (11.3)

and the solution to the equation has an oscillatory character, with frequency N . Physically,
this means that, when displaced upward, the parcel is heavier than its surroundings, feels a
downward recalling force, falls down, and, in the process, acquires a vertical velocity; upon
reaching its original level the particle’s inertia causes it to go further downward and to become
surrounded by heavier fluid. The parcel, now buoyant, is recalled upward, and oscillations
persist about the equilibrium level. The quantity N , defined by the square root of (11.3),
provides the frequency of the oscillation and can thus be called the stratification frequency.
It goes more commonly, however, by the name of Brunt–Väisälä frequency, in recognition of
the two scientists who were the first to highlight the importance of this frequency in stratified
fluids. (See their biographies at the end of this chapter.)

If the coefficient in equation (11.1) is negative (i.e., dρ/dz > 0 , corresponding to a top-
heavy fluid configuration), the solution exhibits exponential growth, a sure sign of instability.
The parcel displaced upward is surrounded by heavier fluid, finds itself buoyant, and moves
farther and farther away from its initial position. Obviously, small perturbations will ensure
not only that the single displaced parcel will depart from its initial position, but that all other
fluid parcels will likewise participate in a general overturning of the fluid until it is finally
stabilized, with the lighter fluid lying above the heavier fluid. If, however, a permanent
destabilization is forced onto the fluid, such as by heating from below or cooling from above,
the fluid will remain in constant agitation, a process called convection.

In this and the following chapters, we will restrict our attention to stably stratified fluids,
for which the stratification frequency,N , defined from (11.3), exists.

11.3 A note on atmospheric stratification
In a compressible fluid, such as the air of our planetary atmosphere, density can change in
one of two ways: by pressure changes or by internal-energy changes. In the first case, a
pressure variation resulting in no heat exchange (i.e., an adiabatic compression or expansion)
is accompanied by both density and temperature variations: All three quantities increase (or
decrease) simultaneously, though not in equal proportions. If the fluid is made of fluid parcels
all having the same heat content, the lower parcels, feeling the weight of those above them,
will be more compressed than those in the upper levels, and the system will appear stratified,
with the denser and warmer fluid underlying the lighter, colder fluid. But such stratification
cannot be dynamically relevant, for if parcels are interchanged adiabatically, they adjust their
density and temperature according to the local pressure, and the system is left unchanged.
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which shows that two cases can arise. The coefficient −(g/ρ0)dρ/dz is either positive or
negative. If it is positive (dρ/dz < 0 , corresponding to a fluid with the greater densities
below the lesser densities), we can define the quantityN2 as
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and the solution to the equation has an oscillatory character, with frequency N . Physically,
this means that, when displaced upward, the parcel is heavier than its surroundings, feels a
downward recalling force, falls down, and, in the process, acquires a vertical velocity; upon
reaching its original level the particle’s inertia causes it to go further downward and to become
surrounded by heavier fluid. The parcel, now buoyant, is recalled upward, and oscillations
persist about the equilibrium level. The quantity N , defined by the square root of (11.3),
provides the frequency of the oscillation and can thus be called the stratification frequency.
It goes more commonly, however, by the name of Brunt–Väisälä frequency, in recognition of
the two scientists who were the first to highlight the importance of this frequency in stratified
fluids. (See their biographies at the end of this chapter.)

If the coefficient in equation (11.1) is negative (i.e., dρ/dz > 0 , corresponding to a top-
heavy fluid configuration), the solution exhibits exponential growth, a sure sign of instability.
The parcel displaced upward is surrounded by heavier fluid, finds itself buoyant, and moves
farther and farther away from its initial position. Obviously, small perturbations will ensure
not only that the single displaced parcel will depart from its initial position, but that all other
fluid parcels will likewise participate in a general overturning of the fluid until it is finally
stabilized, with the lighter fluid lying above the heavier fluid. If, however, a permanent
destabilization is forced onto the fluid, such as by heating from below or cooling from above,
the fluid will remain in constant agitation, a process called convection.

In this and the following chapters, we will restrict our attention to stably stratified fluids,
for which the stratification frequency,N , defined from (11.3), exists.

11.3 A note on atmospheric stratification
In a compressible fluid, such as the air of our planetary atmosphere, density can change in
one of two ways: by pressure changes or by internal-energy changes. In the first case, a
pressure variation resulting in no heat exchange (i.e., an adiabatic compression or expansion)
is accompanied by both density and temperature variations: All three quantities increase (or
decrease) simultaneously, though not in equal proportions. If the fluid is made of fluid parcels
all having the same heat content, the lower parcels, feeling the weight of those above them,
will be more compressed than those in the upper levels, and the system will appear stratified,
with the denser and warmer fluid underlying the lighter, colder fluid. But such stratification
cannot be dynamically relevant, for if parcels are interchanged adiabatically, they adjust their
density and temperature according to the local pressure, and the system is left unchanged.
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Figure 11-3 Fluid parcels located
around level z amidst a tempera-
ture gradient (curved solid line) lo-
cally exceeding the adiabatic lapse rate
(dashed line) are in an unstable situa-
tion. They move upward and eventu-
ally reach their saturation level, con-
densation takes place, and the lapse rate
is decreased. If an inversion is present
at higher levels, cloud extension is ver-
tically limited.

11.4 Convective adjustment
When gravitational instability is present in the ocean or atmosphere, non-hydrostatic move-
ments tend to restore stability through narrow columns of convection, rising plumes and ther-
mals in the atmosphere and so-called convective chimneys in the ocean (e.g., Marshall and
Schott, 1999). These vigorous vertical motions are not resolved by most computer models,
and parameterizations called convection schemes are introduced to remove the instability and
model the mixing associated with convection. Such parameterization can be achieved by ad-
ditional terms in the governing equations, typically through a much increased eddy viscosity
and diffusivity wheneverN2 ≤ 0 (e.g., Cox, 1984; Marotzke, 1991). Other parameterizations
are pieces of computer code of the type (see Figure 11-4):

while there is any denser fluid being on top of lighter fluid
loop over all layers

if density of layer above > density of layer below
mix properties of both layers, with a volume-weighted average

end if
end loop over all layers

end while

Oceanic circulation models (e.g., Bryan, 1969; Cox, 1984) were the first to use this type of
parameterization.

The mixing accomplished by such scheme, however, is too strong in practice, because
the model mixes fluid properties instantaneously over an entire horizontal grid cell of size
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Figure 11-4 Illustration of convec-
tive adjustment while the fluid is heated
from below. Grid boxes below heav-
ier neighbors are systematically mixed
in pairs until the whole fluid column is
rendered stable.

∆x∆y, while physical convection operates at shorter scales and only partially mixes the
physical properties at the spot. Therefore, numerical mixing should preferably be replaced
by a mere swapping of fluid masses, under the assumption that convection carries part of
the properties without alteration to their new level of equilibrium (e.g., Roussenov et al.,
2001). It is clear that some arbitrariness remains and that every application demands its own
calibration. Among other things, changing the time step clearly modifies the speed at which
mixing takes place.

In atmospheric applications, the situation is more complicated as it may involve con-
densation, latent-heat release, and precipitation during convective movement. Atmospheric
convection parameterizations involve delicate adjustments of both temperature and moisture
in the vertical (e.g., Kuo, 1974; Betts, 1986).

11.5 The importance of stratification: The Froude number
It was established in Section 1.5 that rotational effects are dynamically important when the
Rossby number is on the order of unity or less. This number compares the distance traveled
horizontally by a fluid parcel during one revolution (∼ U/Ω) with the length scale over
which the motions take place (L). Rotational effects are important when the former is less
than the latter. By analogy, we may ask whether there exists a similar number measuring the
importance of stratification. From the remarks in the preceding sections, we can anticipate
that the stratification frequency,N , and the height scale,H , of a stratified fluid will play roles
similar to those of Ω and L in rotating fluids.

To illustrate how such a dimensionless number can be derived, let us consider a stratified
fluid of thickness H and stratification frequency N flowing horizontally at a speed U over
an obstacle of length L and height ∆z (Figure 11-5). We can think of a wind in the lower
atmosphere blowing over a mountain range. The presence of the obstacle forces some of
the fluid to be displaced vertically and, hence, requires some supply of gravitational energy.
Stratification will act to restrict or minimize such vertical displacements in some way, forcing
the flow to pass around rather than over the obstacle. The greater the restriction, the greater
the importance of stratification.

The time passed in the vicinity of the obstacle is approximately the time spent by a fluid

Graphical example of the code
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Ro =
U

ΩL
, (4.24)

which compares advection to Coriolis force, is called the Rossby number 3 and is fundamental

in geophysical fluid dynamics. Like its temporal analogue RoT , it is at most on the order of

unity by virtue of (4.12). As a general rule, the characteristics of geophysical flows vary

greatly with the values of the Rossby numbers.

The next number is the product of the Rossby number byWL/UH , which is on the order
of one or less by virtue of (4.14). It will be shown in Section 11.5 that the ratioWL/UH is

generally on the order of the Rossby number itself. The next ratio, P/ρ0ΩLU , is on the order
of unity by virtue of (4.16).

The last two ratios measure the relative importance of horizontal and vertical friction. Of

the two, only the latter bears a name:

Ek =
νE

ΩH2
, (4.25)

is called the Ekman number. For geophysical flows, this number is small. For example,

with an eddy viscosity νE as large as 10−2 m2/s, Ω = 7.3 × 10−5 s−1 and H = 100 m,

Ek = 1.4 × 10−2. The Ekman number is even smaller in laboratory experiments where the

viscosity reverts to its molecular value and the height scaleH is much more modest. [Typical

experimental values are Ω = 4 s−1, H = 20 cm, and ν(water) = 10−6 m2/s, yielding Ek = 6
× 10−6.] Although the Ekman number is small, indicating that the dissipative terms in the

momentum equation may be negligible, these need to be retained. The reason will become

clear in Chapter 8, when it is shown that vertical friction creates a very important boundary

layer.

In nonrotating fluid dynamics, it is customary to compare inertial and frictional forces

by defining the Reynolds number, Re. In the preceding scaling, inertial and frictional forces
were not compared to each other but each was instead compared to the Coriolis force, yielding

the Rossby and Ekman numbers, respectively. There exists a simple relationship between the

three numbers and the aspect ratioH/L:

Re =
UL

νE
=

U

ΩL
·

ΩH2

νE
·

L2

H2
=

Ro

Ek

(

L

H

)2

. (4.26)

Since the Rossby number is on the order of unity or slightly less, but the Ekman number and

the aspect ratioH/L are both much smaller than unity, the Reynolds number of geophysical
flows is extremely large, even after the molecular viscosity has been replaced by a much

larger eddy viscosity.

With (4.16), the two terms in the hydrostatic equation (4.21c) scale respectively as

P

H
, g∆ρ

and the ratio of the latter over the former is

gH∆ρ

P
=

gH∆ρ

ρ0ΩLU
=

U

ΩL
·

gH∆ρ

ρ0U2
= Ro ·

gH∆ρ

ρ0U2
.

3See biographic note at the end of this chapter.

Rossby Number 
advection/rotation

we have derived a scaling for when rotation is important

328 CHAPTER 11. STRATIFICATION

Figure 11-5 Situation in which a stratified flow encounters an obstacle, forcing some fluid parcels to
move vertically against a buoyancy force.

parcel to cover the horizontal distance L at the speed U , that is, T = L/U . To climb a height
of∆z, the fluid needs to acquire a vertical velocity on the order of

W =
∆z

T
=

U∆z

L
. (11.13)

The vertical displacement is on the order of the height of the obstacle and, in the presence of
stratification ρ(z), causes a density perturbation on the order of

∆ρ =

∣
∣
∣
∣

dρ̄

dz

∣
∣
∣
∣

∆z

=
ρ0N

2

g
∆z, (11.14)

where ρ̄(z) is the fluid’s vertical density profile upstream. In turn, this density variation gives
rise to a pressure disturbance that scales, via the hydrostatic balance, as

∆P = gH∆ρ

= ρ0N
2
H∆z. (11.15)

By virtue of the balance of forces in the horizontal, the pressure-gradient force must be ac-
companied by a change in fluid velocity [u∂u/∂x + v∂u/∂y ∼ (1/ρ0)∂p/∂x]:

U2

L
=

∆P

ρ0L
=⇒ U

2
= N

2
H∆z. (11.16)

From this last expression, the ratio of vertical convergence,W/H , to horizontal divergence,
U/L, is found to be

Now derive scaling for when stratification is important!

Consider the following: 
depth of fluid 
stratification N2 
speed U 
over obstacle of length L 
providing vertical displacement Dz

time spent over the obstacle T= L/U 
to go over obstacle you need w=Dz/T = UDz/L 
vertical displacement will cause a density perturbation of order  
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From this last expression, the ratio of vertical convergence,W/H , to horizontal divergence,
U/L, is found to be

this density perturbation --> pressure disturbance
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the change in pressure leads to change in velocity

we can estimate the rate of vertical convergence (W/H) versus horizontal divergence (U/L)11.5. FROUDE NUMBER 329

W/H

U/L
=

∆z

H
=

U2

N2H2
. (11.17)

We immediately note that ifU is less than the productNH ,W/H must be less than U/L,
implying that convergence in the vertical cannot fully meet horizontal divergence. Conse-
quently, the fluid is forced to be partially deflected horizontally so that the term ∂u/∂x can
be met by −∂v/∂y better than by −∂w/∂z. The stronger the stratification, the smaller is U
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called the Froude number, is a measure of the importance of stratification. The rule is: If
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where Ω is the angular rotation rate and L the horizontal scale, is immediate. Both Froude
and Rossby numbers are ratios of the horizontal velocity scale by a product of frequency
and length scale; for stratified fluids, the relevant frequency and length are naturally the
stratification frequency and the height scale, whereas in rotating fluids they are, respectively,
the rotation rate and the horizontal length scale.

The analogy can be pursued a little further. Just as the Froude number is a measure of the
vertical velocity in a stratified fluid [via (11.17)], the Rossby number can be shown to be a
measure of the vertical velocity in a rotating fluid. We saw (Section 7.2) that strongly rotating
fluids (Ro nominally zero) allow no convergence of vertical velocity, even in the presence of
topography. This results from the absence3 of horizontal divergence in geostrophic flows. In
reality, the Rossby number cannot be nil, and the flow cannot be purely geostrophic. The non-
linear terms, of relative importancemeasured byRo, yield corrective terms to the geostrophic
velocities of the same relative importance. Thus, the horizontal divergence, ∂u/∂x+∂v/∂y,
is not zero but is on the order of RoU/L. Since the divergence is matched by the vertical
divergence,−∂w/∂z, on the order ofW/H , we conclude that

W/H

U/L
= Ro, (11.20)

in rotating fluids. Contrasting (11.17) to (11.20), we note that, with regard to vertical veloci-
ties, the square of the Froude number is the analogue of the Rossby number.

In continuation of the analogy, it is tempting to seek the stratified analogue of the Taylor
column in rotating fluids. Recall that Taylor columns occur in rapidly rotating fluids (Ro =

U/ΩL≪ 1). Let us then ask what happens when a fluid is very stratified (Fr = U/NH ≪

1). By virtue of (11.17), the vertical displacements are severely restricted (∆z ≪ H), imply-
ing that an obstacle causes the fluid at that level to be deflected almost purely horizontally.

3For the sake of the analogy, we rule out here an eventual beta effect.

if U^2 is less than N2H2, than the rate of vertical convergence cannot keep up with the flow
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(In the absence of rotation, there is no tendency toward vertical rigidity, and parcels at levels
above the obstacle can flow straight ahead without much disruption.) If the obstacle occupies
the entire width of the domain, such a horizontal detour is not allowed, and the fluid at the
level of the obstacle is blocked on both the upstream and downstream sides. This horizontal
blocking in stratified fluids is the analogue of the vertical Taylor columns in rotating fluids.
Further analogies between homogeneous rotating fluids and stratified nonrotating fluids have
been described by Veronis (1967).

11.6 Combination of rotation and stratification
In the light of the previous remarks, we are now in position to ask what happens when, as in
actual geophysical fluids, the effects of rotation and stratification are simultaneously present.
The preceding analysis remains unchanged, except that we now invoke the geostrophic bal-
ance [see (7.7)] in the horizontal momentum equation to obtain the horizontal velocity scale:

ΩU =
∆P

ρ0L
=⇒ U =

N2H∆z

ΩL
. (11.21)

The ratio of the vertical to horizontal convergence then becomes
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2

Ro
. (11.22)

This is a particular case of great importance. According to our foregoing scaling analysis,
the ratio of vertical convergence to horizontal divergence, (W/H)/(U/L), is given by Fr

2,
Fr

2
/Ro, or Ro, depending on whether vertical motions are controlled by stratification or

rotation or both (Figure 11-6). Thus, if Fr
2
/Ro is less thanRo, stratification restricts vertical

motions more than rotation and is the dominant process. The converse is true if Fr
2
/Ro is

greater than Ro.
Note that Ro is in the denominator of (11.22), which implies that the influence of rota-

tion is to increase the scale for the vertical velocity when stratification is present. However,
since vertical divergence cannot exist without horizontal convergence (W/H ! U/L), the
following inequality must hold:

Fr
2 ! Ro, (11.23)

that is,

U

NH
!

NH

ΩL
. (11.24)

This sets an upper bound for the magnitude of the flow field in a fluid under given rotation
(Ω) and of given stratification (N ) in a domain of given dimensions (L, H). If the velocity
is imposed externally (e.g., by an upstream condition), the inequality specifies either the
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Figure 11-5 Situation in which a stratified flow encounters an obstacle, forcing some fluid parcels to
move vertically against a buoyancy force.

parcel to cover the horizontal distance L at the speed U , that is, T = L/U . To climb a height
of∆z, the fluid needs to acquire a vertical velocity on the order of

W =
∆z

T
=

U∆z

L
. (11.13)

The vertical displacement is on the order of the height of the obstacle and, in the presence of
stratification ρ(z), causes a density perturbation on the order of

∆ρ =

∣
∣
∣
∣

dρ̄

dz

∣
∣
∣
∣

∆z

=
ρ0N

2

g
∆z, (11.14)

where ρ̄(z) is the fluid’s vertical density profile upstream. In turn, this density variation gives
rise to a pressure disturbance that scales, via the hydrostatic balance, as

∆P = gH∆ρ

= ρ0N
2
H∆z. (11.15)

By virtue of the balance of forces in the horizontal, the pressure-gradient force must be ac-
companied by a change in fluid velocity [u∂u/∂x + v∂u/∂y ∼ (1/ρ0)∂p/∂x]:

U2

L
=

∆P

ρ0L
=⇒ U

2
= N

2
H∆z. (11.16)

From this last expression, the ratio of vertical convergence,W/H , to horizontal divergence,
U/L, is found to be
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Figure 11-6 Recapitulation of the vari-
ous scalings of the ratio of vertical con-
vergence (divergence), W/H , to hori-
zontal divergence (convergence), U/L,
as a function of the Rossby number,
Ro = U/(ΩL), and Froude number,
Fr = U/(NH).

horizontal or the vertical length scales of the possible disturbances. Finally, if the system is
such that all quantities are externally imposed and that they do not meet (11.24), then special
effects such as Taylor columns or blocking must occur.

Inequality (11.24) brings a new dimensionless numberNH/ΩL, namely, the ratio of the
Rossby and Froude numbers. For historical reasons and also because it is more convenient in
some dimensional analyses, the square of this quantity is usually defined:

Bu =

(
NH

ΩL

)2

=

(
Ro

Fr

)2

. (11.25)

It bears the name of Burger number, in honor of Alewyn P. Burger (1927–2003), who con-
tributed to our understanding of geostrophic scales of motions (Burger, 1958). In practice,
the Burger number is a useful measure of stratification in the presence of rotation.

In typical geophysical fluids, the height scale is much less than the horizontal length
scale (H ≪ L), but there is also a disparity between the two frequenciesΩ andN . While the
rotation rate of the earth corresponds to a period of 24 h, the stratification frequency generally
corresponds to much shorter periods, on the order of few to tens of minutes in both the ocean
and atmosphere. This implies that generally Ω ≪ N and opens the possibility of a Burger
number on the order of unity.

Stratification and rotation influence the flow field to similar degrees if Fr
2
/Ro and Ro

are on the same order. Such is the case when the Froude number equals the Rossby number
and, consequently, the Burger number is unity. The horizontal length scale then assumes a

332 CHAPTER 11. STRATIFICATION

special value:

L =
NH

Ω
. (11.26)

For the values of Ω and N just cited and a height scale H of 100 m in the ocean and 1 km in
the atmosphere, this horizontal length scale is on the order of 50 km and 500 km in the ocean
and atmosphere, respectively. At this length scale, stratification and rotation go hand in hand.
Later on (Chapter 15), it will be shown that the scale defined above is none other than the
so-called internal radius of deformation.

Analytical Problems

11-1. The Gulf Stream waters are characterized by surface temperatures around 22◦C. At
a depth of 800 m below the Gulf Stream, temperature is only 10◦C. Using the value
2.1 × 10− 4 K− 1 for the coefficient of thermal expansion, calculate the stratification
frequency. What is the horizontal length at which both rotation and stratification play
comparable roles? Compare this length scale to the width of the Gulf Stream.

11-2. An atmospheric inversion occurs when the temperature increases with altitude, in con-
trast to the normal situation when the temperature decays with height. This corresponds
to a very stable stratification and, hence, to a lack of ventilation (smog, etc.). What is
the stratification frequency when the inversion sets in (dT/dz = 0)? Take T = 290 K
and Cp = 1005 m2/s2.K.

11-3. A meteorological balloon rises through the lower atmosphere, simultaneously measur-
ing temperature and pressure. The reading, transmitted to the ground station where
the temperature and pressure are, respectively, 17◦C and 1028 millibars, reveals a gra-
dient ∆T/∆p of 6◦C per 100 millibars. Estimate the stratification frequency. If the
atmosphere were neutral, what would the reading be?

11-4. Wind blowing from the sea at a speed of 10 m/s encounters Diamond Head, an extinct
volcano on the southeastern coast of O’ahu Island in Hawai’i. This volcano is 232 m
tall and 20 km wide. Stable air possesses a stratification frequency on the order of 0.02
s− 1. How do vertical displacements compare to the height of the volcano? What does
this imply about the importance of the stratification? Is the Coriolis force important in
this case?

11-5. Redo Problem 11-4 with the same wind speed and stratification but with a mountain
range 1000 m high and 500 km wide.

11-6. Vertical soundings of the atmosphere provided the temperature profiles displayed in
Figure 11-7. Analyze the stability of each profile.
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atmosphere were neutral, what would the reading be?

11-4. Wind blowing from the sea at a speed of 10 m/s encounters Diamond Head, an extinct
volcano on the southeastern coast of O’ahu Island in Hawai’i. This volcano is 232 m
tall and 20 km wide. Stable air possesses a stratification frequency on the order of 0.02
s− 1. How do vertical displacements compare to the height of the volcano? What does
this imply about the importance of the stratification? Is the Coriolis force important in
this case?

11-5. Redo Problem 11-4 with the same wind speed and stratification but with a mountain
range 1000 m high and 500 km wide.

11-6. Vertical soundings of the atmosphere provided the temperature profiles displayed in
Figure 11-7. Analyze the stability of each profile.

When Fr and Ro are same order 
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W/H
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∆z

H
=

U2

N2H2
. (11.17)

We immediately note that ifU is less than the productNH ,W/H must be less than U/L,
implying that convergence in the vertical cannot fully meet horizontal divergence. Conse-
quently, the fluid is forced to be partially deflected horizontally so that the term ∂u/∂x can
be met by −∂v/∂y better than by −∂w/∂z. The stronger the stratification, the smaller is U

compared to NH and, thus,W/H compared to U/L.
From this argument, we conclude that the ratio

Fr =
U

NH
, (11.18)

called the Froude number, is a measure of the importance of stratification. The rule is: If
Fr ! 1, stratification effects are important; the smaller Fr, the more important these
effects are.

The analogy with the Rossby number of rotating fluids,

Ro =
U

ΩL
, (11.19)

where Ω is the angular rotation rate and L the horizontal scale, is immediate. Both Froude
and Rossby numbers are ratios of the horizontal velocity scale by a product of frequency
and length scale; for stratified fluids, the relevant frequency and length are naturally the
stratification frequency and the height scale, whereas in rotating fluids they are, respectively,
the rotation rate and the horizontal length scale.

The analogy can be pursued a little further. Just as the Froude number is a measure of the
vertical velocity in a stratified fluid [via (11.17)], the Rossby number can be shown to be a
measure of the vertical velocity in a rotating fluid. We saw (Section 7.2) that strongly rotating
fluids (Ro nominally zero) allow no convergence of vertical velocity, even in the presence of
topography. This results from the absence3 of horizontal divergence in geostrophic flows. In
reality, the Rossby number cannot be nil, and the flow cannot be purely geostrophic. The non-
linear terms, of relative importancemeasured byRo, yield corrective terms to the geostrophic
velocities of the same relative importance. Thus, the horizontal divergence, ∂u/∂x+∂v/∂y,
is not zero but is on the order of RoU/L. Since the divergence is matched by the vertical
divergence,−∂w/∂z, on the order ofW/H , we conclude that

W/H

U/L
= Ro, (11.20)

in rotating fluids. Contrasting (11.17) to (11.20), we note that, with regard to vertical veloci-
ties, the square of the Froude number is the analogue of the Rossby number.

In continuation of the analogy, it is tempting to seek the stratified analogue of the Taylor
column in rotating fluids. Recall that Taylor columns occur in rapidly rotating fluids (Ro =

U/ΩL≪ 1). Let us then ask what happens when a fluid is very stratified (Fr = U/NH ≪

1). By virtue of (11.17), the vertical displacements are severely restricted (∆z ≪ H), imply-
ing that an obstacle causes the fluid at that level to be deflected almost purely horizontally.

3For the sake of the analogy, we rule out here an eventual beta effect.
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Chapter 12

Layered Models

(October 5, 2007) SUMMARY: The assumption of density conservation by fluid parcels
is advantageously used to change the vertical coordinate from depth to density. The new
equations allow for a clear discussion of potential-vorticity dynamics and lend themselves to
discretization in the vertical. The result is a layered model. Splitting stratification in a series
of layers may be interpreted as a vertical discretization in which the vertical grid is a material
surface of the flow. This naturally leads to the presentation of Lagrangian approaches. Note:
To avoid problems of terminology, we restrict ourselves here to the ocean. The case of the
atmosphere follows with the replacement of depth by height and density by potential density.

12.1 From depth to density

Since a stable stratification requires a monotonic increase of density downward, density can
be taken as a surrogate for depth and used as the vertical coordinate. If density is conserved by
individual fluid parcels, as it is approximately the case for most geophysical flows, consider-
able mathematical simplification follows, and the new equations present a definite advantage
in a number of situations. It is thus worth expounding on this change of variables at some
length.

In the original Cartesian system of coordinates, z is an independent variable and density
ρ(x, y, z, t) is a dependent variable, giving the water density at location (x, y), time t, and
depth z. In the transformed coordinate system (x, y, ρ, t), density becomes an independent
variable, and z(x, y, ρ, t) has become the dependent variable giving the depth at which density
ρ is found at location (x, y) and at time t. A surface along which density is constant is called
an isopycnal surface, or isopycnic for short.

From a differentiation of the expression a = a(x, y, ρ(x, y, z, t), t), where a is any func-
tion, the rules for the change of variables follow:
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density increasing with depth we can use as coordinate and model fluid 
on isopycnal surface 
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Then, application to a = z gives 0 = zx + zρρx, 1 = zρρz , etc. (where a subscript indicates
a derivative). This provides the rule to change the derivative of ρ at z constant to that of z at
ρ constant. For a other than z, we can write:
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, (12.1)

with similar expressions where x is replaced by y or t, and

∂a

∂z
=

1

zρ

∂a

∂ρ
. (12.2)

Here, subscripts denote derivatives. Figure 12-1 depicts a geometrical interpretation of rule
(12.1).

∆x

C

BA

ρ

ρ+ ∆ρ

z + ∆z

z

De
ns
ity
su
rfa
ce

Figure 12-1 Geometrical interpre-
tation of equation (12.1). The x-
derivatives of any function a at con-
stant depth z and at constant density ρ
are, respectively, [a(B) − a(A)]/∆x
and [a(C)−a(A)]/∆x. The difference
between the two, [a(C) − a(B)]/∆x,
represents the vertical derivative of a,
[a(C) − a(B)]/∆z, times the slope
of the density surface, ∆z/∆x. Fi-
nally, the vertical derivative can be split
as the ratio of the ρ-derivative of a,
[a(C)− a(B)]/∆ρ, by ∆z/∆ρ.

The hydrostatic equation (4.19) readily becomes

∂p
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(12.3)

and leads to the following horizontal pressure gradient:
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The hydrostatic equation (4.19) readily becomes
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and leads to the following horizontal pressure gradient:
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along sloping density surfaces. This property is important for the proper application of lateral
boundary conditions.

To complete the set of equations, it remains to transform the continuity equation (4.21d)
according to rules (12.1) and (12.2). Further elimination of the vertical velocity by using
(12.6) leads to

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (12.9)

where the quantity h is introduced for convenience and is proportional to ∂z/∂ρ, the deriva-
tive of depth with respect to density. For convenience, we want h to have the dimension of
height, and so we introduce an arbitrary but constant density difference,∆ρ, and define:

h = − ∆ρ
∂z

∂ρ
. (12.10)

In this manner, h can be interpreted as the thickness of a fluid layer between the density ρ and
ρ + ∆ρ. At this point, the value of ∆ρ is arbitrary, but later, in the development of layered
models, it will naturally be chosen as the density difference between adjacent layers.

The transformation of coordinates is now complete. The new set of governing equations
consists of the two horizontal-momentum equations (12.8a) and (12.8b), the hydrostatic bal-
ance (12.5), the continuity equation (12.9), and the relation (12.10). It thus forms a closed
5-by-5 system for the dependent variables, u, v, P , z, and h. Once the solution is known, the
pressure p and the vertical velocity w can be recovered from (12.4) and (12.6).

The governing equations are accompanied by the relevant boundary and initial conditions
of Section 4.6. We only have to evaluate the derivatives of the Cartesian coordinates accord-
ing to (12.1) and (12.2), in order to impose the auxiliary conditions in the new coodinate
system. The fluxes of heat and mass, leading to buoyancy changes, are not easily incorpo-
rated, because of the interplay with density, the new coordinate. Since processes that do not
conserve density are neglected in most applications of isopycnal models, we will not inves-
tigate this point here but refer to Dewar (2001) for further details on the representation of
mixed-layer dynamics in isopycnal models.

Since the aforementioned work of Montgomery (1937), the substitution of density as the
vertical variable has been implemented in a number of applications, especially by Robinson
(1965) in a study of inertial currents, by Hodnett (1978) and Huang (1989) in studies of the
permanent oceanic thermocline, and by Sutyrin (1989) in a study of isolated eddies. A review
in the meteorological context is provided by Hoskins et al. (1985).

12.2 Layered models
A layered model is an idealization by which a stratified fluid flow is represented as a finite
number of moving layers, stacked one upon another and each having a uniform density. Its
evolution is governed by a discretized version of the system of equations in which density,
taken as the vertical variable, is not varied continuously but in steps: density is restricted to
assume a finite number of values. A layered model is the density analogue of a level model,
which is obtained after discretization of the vertical variable z.
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Similarly, ∂p/∂y at constant z becomes ∂P/∂y at constant ρ. The new function P , which
plays the role of pressure in the density-coordinate system, is defined as

P = p + ρgz (12.4)

and is called theMontgomery potential1. Later on, when there is no ambiguity, this potential
may loosely be called pressure. With P replacing pressure, the hydrostatic balance, (12.3),
now takes a more compact form:

∂P

∂ρ
= gz, (12.5)

further indicating that P is the natural substitute for pressure when density is the vertical
coordinate.

Beyond this point, all derivatives with respect to x, y and time are meant to be taken at
constant density, and the subscript ρ is no longer necessary.

With the use of (12.1)–(12.3) plus the obvious relation ∂ρ/∂x|ρ = 0, the density-conser-
vation equation, (4.21e) in the absence of diffusion, can be solved for the vertical velocity

w =
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
. (12.6)

This last equation simply tells that the vertical velocity is that necessary for the particle to
remain at all times on the same density surface, in analogy with surface fluid particles having
to remain on the surface [see Equation (7.15)]. Armed with expression (12.6), we can now
eliminate the vertical velocity throughout the set of governing equations. First, the material
derivative (3.3) assumes a simplified, two-dimensional-like form:

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
, (12.7)

where the derivatives are now taken at constant ρ. The absence of an advective term in the
third spatial direction results from the absence of motion across density surfaces.

In the absence of friction and in the presence of rotation, the horizontal-momentum equa-
tions (4.21a) and (4.21b) become

du

dt
− fv = −

1

ρ0

∂P

∂x
(12.8a)

dv

dt
+ fu = −

1

ρ0

∂P

∂y
. (12.8b)

We note that they are almost identical to their original versions. The differences are nonethe-
less important: The material derivative is now along density surfaces and expressed by (12.7),
the pressure p has been replaced by the Montgomery potential P defined in (12.4), and all
temporal and horizontal derivatives are taken at constant density. Note, however, that the
components u and v are still the true horizontal velocity components and are not measured

1In honor of Raymond B. Montgomery who first introduced it in 1937. See his biography at the end of this
chapter.
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temporal and horizontal derivatives are taken at constant density. Note, however, that the
components u and v are still the true horizontal velocity components and are not measured

1In honor of Raymond B. Montgomery who first introduced it in 1937. See his biography at the end of this
chapter.
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Each layer (k = 1tom, wherem is the number of layers) is characterized by its density
ρk (unchanging), thickness hk, Montgomery potential Pk, and horizontal velocity compo-
nents uk and vk. The surface marking the boundary between two adjacent layers is called
an interface and is described by its elevation zk, measured (negatively downward) from the
mean surface level. The displaced surface level is denoted z0 (Figure 12-2a). The interfacial
heights can be obtained recursively from the bottom2

zm = b, (12.11)

upward:

zk−1 = zk + hk, k = m to 1. (12.12)

This geometrical relation can be regarded as the discretized version of (12.10) used to define
h.

In a similar manner, the discretization of hydrostatic relation (12.5) provides another re-
cursive relation, which can be used to evaluate the Montgomery potential P from the top,

P1 = patm + ρ0gz0, (12.13)

downward:

Pk+1 = Pk + ∆ρgzk, k = 1tom−1. (12.14)

In writing (12.13), we have selected the uppermost density ρ1 as the reference density ρ0.
Gradients of the atmospheric pressure patm rarely play a significant role, and the contribution
of patm to P1 is usually omitted. If the layered model is for the lower atmosphere, patm

represents a pressure distribution aloft and may, too, be taken as an inactive constant.
When the reduced gravity,

g
′

=
∆ρ

ρ0
g, (12.15)

is introduced for convenience, the recursive relations (12.12) and (12.14) lead to simple ex-
pressions for the interfacial heights and Montgomery potentials. For up to three layers, these
equations are summarized in Table 12.1.

In certain applications, it is helpful to discard surface gravity waves, beacuse they travel
much faster than internal waves and near-geostrophic disturbances. To do so, we eliminate
the flexibility of the surface by imagining that the system is covered by a rigid lid (Figure
12-2b). This is called the rigid-lid approximation, which has already been introduced in the
study of barotropic motions in Section 7.5. In such a case, z0 is set to zero, and there are only
(m − 1) independent layer thicknesses. In return, one of the Montgomery potentials cannot
be derived from the hydrostatic relation. If this potential is chosen as the one in the lowest
layer, the recursive relations yield the equations of Table 12.2.

In some other instances, mainly in the investigation of upper-ocean processes, the lowest
layer may be imagined to be infinitely deep and at rest (Figure 12-3). Keeping m as the

2Note that contrary to our general approach to use indexes which increase with the Cartesian coordinate direc-
tions, we choose to increase the index k downward, in agreement with the traditional notation for isopycnal models
and with the fact that our new vertical coordinate is ρ increasing downward, too.
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12.3 Potential vorticity
For layered models, we can reproduce the vorticity analysis that we perfomed on the shallow-
water model (Section 7.4). First, the relative vorticity ζ of the flow at any level is defined as

ζ =
∂v

∂x
−

∂u

∂y
, (12.20)

and the expression for potential vorticity is defined in analogy with (7.28):

q =
f + ζ

h

=
f + ∂v/∂x− ∂u/∂y

h
, (12.21)

which is identical to the expression for a barotropic fluid, except that the denominator is now
a differential thickness given by (12.10) rather than the full thickness of the system. It can be
shown that in the absence of friction, expression (12.21) is conserved by the flow (its material
derivative is zero).

The interpretation of this conservation property follows that for a barotropic fluid: When
the fluid layer between two consecutive density surface is squeezed (from left to right in
Figure 12-4), conservation of volume demands that it widens, and conservation of circulation
in turn requires that it spins less fast; the net effect is that the vorticity f + ζ decreases in
proportion to the thickness h of the fluid layer.

f+ζ
2

h
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Figure 12-4 Conservation of volume and circulation in a fluid undergoing divergence (squeezing) or
convergence (stretching). The products of h ds and (f +ζ) ds are conserved during the transformation,
implying conservation of (f + ζ)/h, too.




