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Boundary Conditions

Figure 4-1 Schematic representation of possible exchanges between the system under investigation
and the surrounding environment. Boundary conditions must specify the influence of this outside world
on the evolution within the domain. Exchanges may take place at the air-sea interface, in bottom layers,
along coasts and/or at any other boundary of the domain.



Boundary Conditions
state variables (variables

with time derivative)
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Kinematic Boundary Conditions

flow cannot penetrate solid boundaries (e.g. land, or bottom topography)
impermeability condition
Surface Surface

z—b=20

U A
Bottom

Figure 4-2 Notation and two physical interpretations of the bottom boundary condition illustrated here
in a (z, z) plane for a topography independent of y. The impermeability of the bottom imposes that
the velocity be tangent to the bottom defined by z — b = 0. In terms of the fluid budget, which can be
extended to a finite volume approach, expressing that the horizontal inflow matches the vertical outflow
requires u (b(x + dx) — b(z)) = w dx, which for dr — 0 leads to (4.28). Note that the velocity ratio
w/u is equal to the topographic slope db/dx, which scales like the ratio of vertical to horizontal length
scales, i.e., the aspect ratio. b b

Volume flux balance at bottom |“ = “3; T V5,




Kinematic Boundary Conditions

flow cannot penetrate solid boundaries (e.g. land, or bottom topography)
impermeability condition

Bottom

Volume flux balance at surface

Reference surface
geoid

Figure 4-3 Notation for the surface
boundary condition. Expressing imper-
meability of the moving surface z —
n = 0 results in boundary condition
(4.31). (The elevation of the sea sur-
face height 7 is exaggerated compared
to h for the purpose of illustration.)

_0On on on _
= +u8x+vﬁy at z =n.




Kinematic Boundary Conditions

additional lateral boundary conditions for the free-surface

Reduced model domain due to
unresolved shelf processes

Unresolved outcropping Figure 4-4 Vertical section across an
position oceanic domain reaching the coast. Be-
. sides surface and bottom boundaries,
\ | the coast introduces an additional lat-
Surface ) :
. eral boundary. Introducing an artifi-

cial vertical wall is necessary because
a fixed numerical grid cannot describe
well the exact position of the water’s
edge. Occasionally, a vertical wall
1s assumed at the shelf break, remov-
ing the entire shelf area from the do-
main, because the reduced physics of
the model are incapable of representing
o some processes on the shelf.

Shelf /
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Dynamic Boundary Conditions
ensuring a dynamic continuity at the boundaries

Datm = Psea  at air-sea interface. z=1

psea(z — O) = Patm at sea level T P0g7) z=0



Dynamic Boundary Conditions
ensuring a dynamic continuity at the boundaries
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Dynamic Boundary Conditions
ensuring a dynamic continuity at the boundaries
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Dynamic Boundary Conditions
ensuring a dynamic continuity at the boundaries, for a moving boundary

Wind Stress Free Surface
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Dynamic Boundary Conditions
ensuring a dynamic continuity at the boundaries, for a moving boundary

Wind Stress Free Surface

_)
Velocity of Fluid

Continuity of velocity and tangential stresses

5
7 = Cg pair Urou10, 77 = C4 pair Ur0v10,

Uio = \/U%o + U%o : Cd= drag coefficient
Wind Speed at 10m



Dynamic Boundary Conditions
ensuring a dynamic continuity at the boundaries, for a open boundaries

Figure 4-5 Open boundaries are com-
mon in regional modeling. Condi-
tions at open boundaries are gener-
ally difficult to impose. In particu-
lar the nature of the condition depends
on whether the flow enters the do-
main (carrying unknown information
from the exterior) or leaves it (export-
ing known information). (Courtesy
of the HYCOM Consortium on Data-
Assimilative Modeling)

Nesting regional high resolution model raises
the issues of prescribing boundary conditions
In open ocean regions



Tracer Boundary Conditions
advective and diffusive fluxes of buoyancy (that is fluxes of heat and salt)
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Dirichlet condition
prescribing the value of the variable (e.g. advective flux)

Newmann condition
prescribing the values of the gradient (e.g. diffusive flux)

Cauchy condition, Robin condition
prescribing the values of the total flux advective + diffusive

At a solid insulated boundary the total flux is set to zero.




Tracer Boundary Conditions
advective and diffusive fluxes of buoyancy (that is fluxes of heat and salt)
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= F(Tsea, Tair, U0, cloudiness, moisture, ...)




Numerical Implementation of Boundary Conditions

Dirichlet condition
prescribing the value of the variable (e.g. advective flux)
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Numerical Implementation of Boundary Conditions

Newmann condition

prescribing the values of the gradient (e.g. diffusive flux)
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Numerical Implementation of Boundary Conditions

Cauchy condition, Robin condition
prescribing the values of the total flux advective + diffusive
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Numerical Implementation of Boundary Conditions
higher order operators ..
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Dirichlet condition

Figure 4-7 An operator spanning 2
points on each side of the calculation
point can be applied only up to m — 2
if a single Dirichlet condition is pre-
scribed. When applying the same op-
erator at m — 1 we face the problem
that the value at m + 1 does not exist.



Accuracy and Errors

* Modeling errors: This error is caused by the imperfections of the mathematical model
in representing the physical system. It is thus the difference between the evolution
of the real system and that of the exact solution of its mathematical representation.
Earlier in this chapter we introduced simplifications to the equations and added pa-
rameterizations of unresolved processes, which all introduce errors of representation.
Furthermore, even if the model formulation had been ideal, coefficients remain imper-
fecly known. Uncertainties in the accompanying boundary conditions also contribute
to modeling errors.

* Discretization errors: This error is introduced when the original equations are approx-
imated to transform them into a computer code. It is thus the difference between the
exact solution of the continuous problem and the exact numerical solution of the dis-
cretized equations. Examples are the replacement of derivatives by finite differences
and the use of guesses in predictor-corrector schemes.

e [teration errors: This error originates with the use of iterative methods to perform
intermediate steps in the algorithm and is thus measured as the difference between the
exact solution of the discrete equations and the numerical solution actually obtained.
An example is the use of the so-called Jacobi method to invert a matrix at some stage
of the calculations: for the sake of time, the iterative process is interrupted before full
convergence is reached.

* Rounding errors: These errors are due to the fact that only a finite number of digits are
used in the computer to represent real numbers.

A well constructed model should ensure that

rounding errors < iteration errors < discretization errors < modeling errors.




Surface and Bottom Boundary Conditions
for Momentum, the Ekman boundary Layers

Interior

Figure 8-3 Frictional influence of a flat bottom on a uniform flow in a rotating framework.



Surface and Bottom Boundary Conditions
for Momentum, the Ekman boundary Layers
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Surface and Bottom Boundary Conditions
for Momentum, the Ekman boundary Layers
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Surface and Bottom Boundary Conditions
for Momentum, the Ekman boundary Layers

Ekman Number
viscous force/rotation
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Surface and Bottom Boundary Conditions
for Momentum, the Ekman boundary Layers

Ekman number typically small
and friction is neglected, except
close to the boundary ~1
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Surface and Bottom Boundary Conditions
for Momentum, the Ekman boundary Layers
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Surface and Bottom Boundary Conditions
for Momentum, the Ekman boundary Layers

Dominant balance is between rotation and friction terms
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Surface and Bottom Boundary Conditions
for Momentum, the Ekman boundary Layers
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Surface and Bottom Boundary Conditions
for Momentum, the Ekman boundary Layers
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Toward interior (z — — o0) : u=u, v =17.



Surface and Bottom Boundary Conditions
for Momentum, the Ekman surface Layers
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Wind stress ~.

Sea surface
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layer Ageostrophic boundary (Ekman) flow
___________________ '\ S,
Interior (u,v) = (u, )
Geostrophic interior flow

Figure 8-6 The surface Ekman layer generated by a wind stress on the ocean.



Surface and Bottom Boundary Conditions
for Momentum, the Ekman surface Layers
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Toward interior (z — — o0) : u=u, v =17.



Surface and Bottom Boundary Conditions
for Momentum, the Ekman surface Layers

82
— f (U — ’17) = UVEg 8—;
82
0
Surface (z = 0) : POVEa_u = 7%, PoVE
2
Toward interior (z — — o0) : u=u, v =17.

Ekman Transport
U = /_ (u—1u)dz = — 7Y



Surface and Bottom Boundary Conditions
for Momentum, the Ekman surface Layers

_ 0°u
— f(?}—v) = UVEg @
_ 0%
ou ov
urface (z ) POVE 5 ", povE 5 T
Toward interior (z — — o0) : u=u, v =17.
Solution 5
2 I z T z T\
= z/d |, _x < " o . <~ "
u = u+p0fde U COS(d 4> TySHl(d 4)_
o V2 efd [ o o (7 7'(' 2 T
O T gl sin (5 = 7)) + 7 eos(5 - )




Surface and Bottom Boundary Conditions
for Momentum, the Ekman surface Layers
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Implication of the Ekman surface Layers
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Figure 8-8 Ekman pumping in an ocean subject to sheared winds (case of Northern Hemisphere).



Surface and Bottom Boundary Conditions
for Momentum, the Ekman bottom Layers

Interior

Figure 8-3 Frictional influence of a flat bottom on a uniform flow in a rotating framework.



Surface and Bottom Boundary Conditions
for Momentum, the Ekman bottom Layers
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Surface and Bottom Boundary Conditions
for Momentum, the Ekman bottom Layers

z/Ad

oA
Wiy

Figure 8-4 The velocity spiral in the bottom Ekman layer. The figure is drawn for the Northern
Hemisphere (f > 0), and the deflection is to the left of the current above the layer. The reverse holds
for the Southern Hemisphere.



