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This leads to the additional dimensionless ratio

Ri =
gH∆ρ

ρ0U
2

, (4.27)

which we already encountered in Section 1.6. It is called the Richardson number4. For
geophysical flows, this number may be much less than, on the order of, or much greater than
unity, depending on whether stratification effects are negligible, important or dominant.

4.6 Boundary conditions
The equations of section 4.4 governing geophysical flows form a closed set of equations,
with the number of unknown functions being equal to the number of available independent
equations. However, the solution of those equations is uniquely defined only when additional
specifications are provided. Those auxiliary conditions concern information on the initial
state and geographical boundaries of the system (Figure 4-1).

✢

✲✛

✻❄

✠✒

Figure 4-1 Schematic representation of possible exchanges between the system under investigation
and the surrounding environment. Boundary conditions must specify the influence of this outside world
on the evolution within the domain. Exchanges may take place at the air-sea interface, in bottom layers,
along coasts and/or at any other boundary of the domain.

Because the governing equations (4.21) contain first-order time derivatives of u, v and ρ,
initial conditions are required, one for each of these three-dimensional fields. Because the
respective equations, (4.21a), (4.21b) and (4.21e), provide tendencies for these variables in
order to calculate future values, it is necessary to specify from where to start. The variables

4See biography at the end of Chapter 14
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the presence of substantial motions2. Looking back, we note that the main reason behind this
reduction is the strong geometric disparity of geophysical flows (H ≪ L).

In rare instances when this disparity between horizontal and vertical scales does not exist,
such as in convection plumes and short internal waves, the hydrostatic approximation ceases
to hold and the vertical-momentum balance includes a three-way balance between vertical
acceleration, pressure gradient and buoyancy.

4.4 Recapitulation of equations governing geophysical flows

The Boussinesq approximation performed in the previous chapter and the preceding devel-
opments have greatly simplified the equations. We recapitulate them here.
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z−momentum: 0 = −
∂p
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− ρg (4.21c)

continuity:
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where the reference density ρ0 and the gravitational acceleration g are constant coefficients,
the Coriolis parameter f = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE and κE may taken as constants or functions
of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
called primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations

2According to Nebeker (1995, page 51), the scientist deserving credit for the hydrostatic balance in geophysical
flows is Alexis Clairaut (1713–1765).

diagnostic variables 
(variables with no time derivative)

state variables (variables 
with time derivative)
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Figure 4-2 Notation and two physical interpretations of the bottom boundary condition illustrated here
in a (x, z) plane for a topography independent of y. The impermeability of the bottom imposes that
the velocity be tangent to the bottom defined by z − b = 0. In terms of the fluid budget, which can be
extended to a finite volume approach, expressing that the horizontal inflow matches the vertical outflow
requires u (b(x + dx)− b(x)) = w dx, which for dx → 0leads to (4.28). Note that the velocity ratio
w/u is equal to the topographic slope db/dx, which scales like the ratio of vertical to horizontal length
scales, i.e., the aspect ratio.

Particularly simple cases are those of a flat bottom and of a free surface of which the
vertical displacements are neglected (such as small water waves on the surface of the deep
sea) — called the rigid-lid approximation, which will be scrutinized in Section 7.6. In such
cases, the vertical velocity is simply zero at the corresponding boundary.

A difficulty with the free surface boundary arises because the boundary condition is im-
posed at z = η, i.e., at a location changing over time, depending on the flow itself. Such
a problem is called a moving boundary problem, a topic which is a discipline unto itself in
Computational Fluid Dynamics (CFD) (e.g., Crank 1987).

In oceanic models, lateral walls are introduced in addition to bottom and top boundaries
so that the water depth remains non-zero all the way to the edge (Figure 4-4). This is because
watering and dewatering of land that would otherwise occur at the outcrop of the ocean floor
is difficult to model with a fixed grid. At a vertical wall, impermeability demands that the
normal component of the horizontal velocity be zero.

4.6.2 Dynamic condition

The previous impermeability conditions are purely kinematic, involving only velocity compo-
nents. Dynamical conditions, implicating forces, are sometimes also necessary, for example
when requiring continuity of pressure at the air-sea interface.

Ignoring the effect of surface tension, which is important only for very short water waves
(capillary waves, with wavelengths no longer than a few centimeters), the pressure patm

exerted by the atmosphere on the sea must equal the pressure psea exerted by the ocean onto
the atmosphere:

patm = psea at air-sea interface. (4.32)

flow cannot penetrate solid boundaries (e.g. land, or bottom topography) 
impermeability condition
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of which is dictated by the physics of the problem. The second condition, ũ1, must then be
such that its influence disappears in the limit ∆t→ 0 . This will be the case with the explicit
Euler scheme ũ1

= ũ0
+ ∆tQ [where Q(t0, ũ0

) stands for the other terms in the equation
at time t0]. Indeed, ũ1 tends to the actual initial value ũ0 and the first leapfrog step yields
ũ2 = ũ0 + 2∆tQ(t1, ũ0 + O(∆t)) which is consistent with a finite difference over a 2∆t

time step.
Leaving for later sections the complexity of the additional conditions that may be required

by virtue of the discretization schemes, the following sections present the boundary condi-
tions that are most commonly encountered in GFD problems. They stem from basic physical
requirements.

4.6.1 Kinematic conditions
A most important condition, independent of any physical property or subgrid-scale parame-
terization, is that air and water flows do not penetrate land5. To translate this impermeability
requirement into a mathematical boundary condition, we simply express that the velocity
must be tangent to the land boundary, that is, the normal vector to the boundary surface and
the velocity vector are orthogonal to each other.

Consider the solid bottom of the domain. With this boundary defined as z−b(x, y) = 0 ,
the normal vector is given by [∂(z−b)/∂x, ∂(z−b)/∂y, ∂(z−b)/∂z] = [−∂b/∂x,−∂b/∂y,
1 ], the boundary condition is

w = u
∂b

∂x
+ v

∂b

∂y
at the bottom. (4.28)

We can interpret this condition in terms of a fluid budget at the bottom (Figure 4-2) or
alternatively as the condition that the bottom is a material surface of the fluid, not crossed by
the flow and immobile. Expressing that the bottom is a material surface indeed demands

d

dt
(z−b) = 0 , (4.29)

which is equivalent to (4.28) since dz/dt = w and ∂b/∂t = 0 .
At a free surface, the situation is similar to the bottom except for the fact that the boundary

is moving with the fluid. If we exclude overturning waves, the position of the surface is
uniquely defined at every horizontal point by its vertical position η (Figure 4-3), and z−η = 0

is the equation of the boundary. We then express that it is a material surface6:

d

dt
(z−η) = 0 at the free surface (4.30)

and obtain the surface boundary condition

w =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
at z = η. (4.31)

5There is no appreciable penetration of land by water and air at geophysical scales. For ground flows, known
to have a strong impact on geochemical behaviors of coastal systems, an appropriate flux can always be imposed if
necessary.

6Exceptions are evaporation and precipitation at the air-sea interface. When important, these may be accommo-
dated in a straightforward manner.

Volume flux balance at bottom
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Figure 4-3 Notation for the surface
boundary condition. Expressing imper-
meability of the moving surface z −
η = 0 results in boundary condition
(4.31). (The elevation of the sea sur-
face height η is exaggerated compared
to h for the purpose of illustration.)
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Figure 4-4 Vertical section across an
oceanic domain reaching the coast. Be-
sides surface and bottom boundaries,
the coast introduces an additional lat-
eral boundary. Introducing an artifi-
cial vertical wall is necessary because
a fixed numerical grid cannot describe
well the exact position of the water’s
edge. Occasionally, a vertical wall
is assumed at the shelf break, remov-
ing the entire shelf area from the do-
main, because the reduced physics of
the model are incapable of representing
some processes on the shelf.

If the sea surface elevation is η and pressure is hydrostatic below, it follows that continuity of
pressure at the actual surface z = η implies

psea(z = 0) = patm at sea level + ρ0gη (4.33)

at the more convenient reference sea level z = 0.
Another dynamical boundary condition depends on whether the fluid is considered in-

viscid or viscous. In reality all fluids are subject to internal friction, so that, in principle, a
fluid particle next to fixed boundary must adhere to that boundary and its velocity be zero.
However, the distance over which the velocity falls to zero near a boundary is usually short
because viscosity is weak. This short distance restricts the influence of friction to a narrow
band of fluid along the boundary, called a boundary layer. If the extent of this boundary
layer is negligible compared to the length scale of interest, and generally it is, it is permissi-
ble to neglect friction altogether in the momentum equations. In this case, slip between the
fluid and the boundary must be allowed, and the only boundary condition to be applied is the
impermeability condition.

Kinematic Boundary Conditions
flow cannot penetrate solid boundaries (e.g. land, or bottom topography) 
impermeability condition
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oceanic domain reaching the coast. Be-
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If the sea surface elevation is η and pressure is hydrostatic below, it follows that continuity of
pressure at the actual surface z = η implies

psea(z = 0) = patm at sea level + ρ0gη (4.33)

at the more convenient reference sea level z = 0.
Another dynamical boundary condition depends on whether the fluid is considered in-

viscid or viscous. In reality all fluids are subject to internal friction, so that, in principle, a
fluid particle next to fixed boundary must adhere to that boundary and its velocity be zero.
However, the distance over which the velocity falls to zero near a boundary is usually short
because viscosity is weak. This short distance restricts the influence of friction to a narrow
band of fluid along the boundary, called a boundary layer. If the extent of this boundary
layer is negligible compared to the length scale of interest, and generally it is, it is permissi-
ble to neglect friction altogether in the momentum equations. In this case, slip between the
fluid and the boundary must be allowed, and the only boundary condition to be applied is the
impermeability condition.

additional lateral boundary conditions for the free-surface

Kinematic Boundary Conditions
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ensuring a dynamic continuity at the boundaries
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Figure 4-2 Notation and two physical interpretations of the bottom boundary condition illustrated here
in a (x, z) plane for a topography independent of y. The impermeability of the bottom imposes that
the velocity be tangent to the bottom defined by z − b = 0. In terms of the fluid budget, which can be
extended to a finite volume approach, expressing that the horizontal inflow matches the vertical outflow
requires u (b(x + dx)− b(x)) = w dx, which for dx → 0leads to (4.28). Note that the velocity ratio
w/u is equal to the topographic slope db/dx, which scales like the ratio of vertical to horizontal length
scales, i.e., the aspect ratio.

Particularly simple cases are those of a flat bottom and of a free surface of which the
vertical displacements are neglected (such as small water waves on the surface of the deep
sea) — called the rigid-lid approximation, which will be scrutinized in Section 7.6. In such
cases, the vertical velocity is simply zero at the corresponding boundary.

A difficulty with the free surface boundary arises because the boundary condition is im-
posed at z = η, i.e., at a location changing over time, depending on the flow itself. Such
a problem is called a moving boundary problem, a topic which is a discipline unto itself in
Computational Fluid Dynamics (CFD) (e.g., Crank 1987).

In oceanic models, lateral walls are introduced in addition to bottom and top boundaries
so that the water depth remains non-zero all the way to the edge (Figure 4-4). This is because
watering and dewatering of land that would otherwise occur at the outcrop of the ocean floor
is difficult to model with a fixed grid. At a vertical wall, impermeability demands that the
normal component of the horizontal velocity be zero.

4.6.2 Dynamic condition

The previous impermeability conditions are purely kinematic, involving only velocity compo-
nents. Dynamical conditions, implicating forces, are sometimes also necessary, for example
when requiring continuity of pressure at the air-sea interface.

Ignoring the effect of surface tension, which is important only for very short water waves
(capillary waves, with wavelengths no longer than a few centimeters), the pressure patm

exerted by the atmosphere on the sea must equal the pressure psea exerted by the ocean onto
the atmosphere:

patm = psea at air-sea interface. (4.32)
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If the sea surface elevation is η and pressure is hydrostatic below, it follows that continuity of
pressure at the actual surface z = η implies

psea(z = 0) = patm at sea level + ρ0gη (4.33)

at the more convenient reference sea level z = 0.
Another dynamical boundary condition depends on whether the fluid is considered in-

viscid or viscous. In reality all fluids are subject to internal friction, so that, in principle, a
fluid particle next to fixed boundary must adhere to that boundary and its velocity be zero.
However, the distance over which the velocity falls to zero near a boundary is usually short
because viscosity is weak. This short distance restricts the influence of friction to a narrow
band of fluid along the boundary, called a boundary layer. If the extent of this boundary
layer is negligible compared to the length scale of interest, and generally it is, it is permissi-
ble to neglect friction altogether in the momentum equations. In this case, slip between the
fluid and the boundary must be allowed, and the only boundary condition to be applied is the
impermeability condition.
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Dynamic Boundary Conditions
ensuring a dynamic continuity at the boundaries, for a moving boundary
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Figure 4-5 Open boundaries are com-
mon in regional modeling. Condi-
tions at open boundaries are gener-
ally difficult to impose. In particu-
lar the nature of the condition depends
on whether the flow enters the do-
main (carrying unknown information
from the exterior) or leaves it (export-
ing known information). (Courtesy
of the HYCOM Consortium on Data-
Assimilative Modeling)

If viscosity is taken into account, however, zero velocity must be imposed at a fixed
boundary, whereas along a moving boundary between two fluids, continuity of both velocity
and tangential stress is required. From the oceanic point of view this requires

ρ0νE

(
∂u

∂z

)∣
∣
∣
∣
at surface

= τ
x
, ρ0νE

(
∂v

∂z

)∣
∣
∣
∣
at surface

= τ
y (4.34)

where τx and τy are the components of the wind stress exerted by the atmosphere onto the
sea. These are usually taken as quadratic functions of the wind velocity u10 10 meters above
the sea and parameterized using a drag coefficient:

τ
x

= Cd ρair U10u10, τ
y

= Cd ρair U10v10, (4.35)

where u10 and v10 are the x and y components of the wind vector u10, U10 =
√

u2
10 + v2

10 is
the wind speed, and Cd is a drag coefficient with approximate value of 0.0015 for wind over
the sea.

Lastly, an edge of the model may be an open boundary, by which we mean that the
model domain is terminated at some location that cuts across a broader natural domain. Such
a situation arises because computer resources or data availability restrict the attention to a
portion of a broader system. Examples are regional meteorological models and coastal ocean
models (Figure 4-5). Ideally, the influence of the outside system onto the system of interest
should be specified along the open boundary, but this is most often impossible in practice, for
the obvious reason that the un-modeled part of the system is not known. Certain conditions,
however, can be applied. For example, waves may be allowed to exit but not enter through
the open boundary, or flow properties may be specified where the flow enters the domain but
not where it leaves the domain. In oceanic tidal models, the sea surface may be imposed as a
periodic function of time.

With increased computer power over the last decade, it has become common nowadays
to nest models into one another, that is, the regionally limited model of interest is embedded
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Figure 4-5 Open boundaries are com-
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where τx and τy are the components of the wind stress exerted by the atmosphere onto the
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the wind speed, and Cd is a drag coefficient with approximate value of 0.0015 for wind over
the sea.

Lastly, an edge of the model may be an open boundary, by which we mean that the
model domain is terminated at some location that cuts across a broader natural domain. Such
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the presence of substantial motions2. Looking back, we note that the main reason behind this
reduction is the strong geometric disparity of geophysical flows (H ≪ L).

In rare instances when this disparity between horizontal and vertical scales does not exist,
such as in convection plumes and short internal waves, the hydrostatic approximation ceases
to hold and the vertical-momentum balance includes a three-way balance between vertical
acceleration, pressure gradient and buoyancy.

4.4 Recapitulation of equations governing geophysical flows

The Boussinesq approximation performed in the previous chapter and the preceding devel-
opments have greatly simplified the equations. We recapitulate them here.
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where the reference density ρ0 and the gravitational acceleration g are constant coefficients,
the Coriolis parameter f = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE and κE may taken as constants or functions
of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
called primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations

2According to Nebeker (1995, page 51), the scientist deserving credit for the hydrostatic balance in geophysical
flows is Alexis Clairaut (1713–1765).

Dirichlet condition  
prescribing the value of the variable (e.g. advective flux) 

Newmann condition  
prescribing the values of the gradient (e.g. diffusive flux) 

Cauchy condition, Robin condition  
prescribing the values of the total flux advective + diffusive
At a solid insulated boundary the total flux is set to zero.
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where the reference density ρ0 and the gravitational acceleration g are constant coefficients,
the Coriolis parameter f = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE and κE may taken as constants or functions
of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
called primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations
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nested into a grid that covers the continent, which itself is nested inside a grid that covers the
entire globe.

4.6.3 Heat, salt and tracer boundary conditions
For equations similar to those governing the evolution of temperature, salt or density, i.e.,
including advection and diffusion terms, we have the choice of imposing the value of the
variable, its gradient, or a mixture of both. Prescribing the value of the variable (Dirichlet
condition) is natural in situations where it is known from observations (sea surface temper-
ature from satellite data, for example). Setting the gradient (Neumann condition) is done to
impose the diffusive flux of the quantity (e.g., heat flux) and is therefore often associated with
the prescription of turbulent air-sea exchanges. A mixed condition (Cauchy condition, Robin
condition) is typically used to prescribe a total, advective plus diffusive, flux. For a 1D heat
flux, for example, one sets the value of uT − κT∂T/∂x at the boundary. For an insulating
boundary this flux is simply zero.

To choose the value of the variable or its gradient at the boundary, either observations
are invoked or exchange laws prescribed. The most complex exchange laws are those for
the air-sea interface, which involve calculation of fluxes depending on the sea surface water
temperature Tsea (often called SST), air temperature Tair, wind speed u10 at 10 meters above
the sea, cloudiness, moisture etc. Formally,

− κT

∂T

∂z

∣
∣
∣
∣
z=η

= F (Tsea, Tair,u10, cloudiness, moisture, ...). (4.36)

For heat fluxes, imposing the condition at z = 0rather than at the actual position z = η of
the sea surface introduces an error much below the error in the heat flux estimate itself and is
a welcomed simplification.

If the density equation is used as a combination of both salinity and temperature equations
by invoking the linearized state equation, ρ = −αT +βS, and if it can be reasonably assumed
that all are dispersed with the turbulent diffusivity, the boundary condition on density can be
formulated as a weighted sum of prescribed temperature and salt fluxes:

νE

∂ρ

∂z
= − ανE

∂T

∂z
+ βνE

∂S

∂z
. (4.37)

For any tracer (a quantity advected and dispersed by the flow), a condition similar to those
on temperature and salinity can be imposed and, in particular, a zero total flux is common
when there is no tracer input at the boundary.

4.7 Numerical implementation of boundary conditions
Once mathematical boundary conditions are specified and values assigned at the boundaries,
we can tackle the task of implementing the boundary condition numerically. We illustrate the
process again with temperature as the example.

In addition to nodes forming the grid covering the domain being modeled, other nodes
are placed exactly at or slightly beyond the boundaries (Figure 4-6). These additional nodes

Example of surface Boundary Condition
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are introduced to facilitate the implementation of the boundary condition. If the condition is
to specify the value Tb of the numerical variable T̃ , it is most natural to place a node at the
boundary (Figure 4-6 right side) so that

T̃m = Tb, (4.38)

requires no interpolation and forms an exact implementation.

21 m

✲✛ Domain of interest

✻
Boundary in xb

✻
Boundary with grid node

✲✛ ∆x

Figure 4-6 Grid nodes cover the inte-
rior of the domain of interest. Addi-
tional nodes may be placed beyond a
boundary as illustrated on the left side
or placed on the boundary as illustrated
on the right. The numerical implemen-
tation of the boundary condition de-
pends on the arrangement selected.

If instead the boundary condition is in the form of a flux, it is more practical to have
two grid nodes straddling the boundary, with one slightly outside the domain and the other
slightly inside (Figure 4-6 left side). In this manner, the derivative of the variable is more
precisely formulated at the location of the boundary. With the index notation of Figure 4-6,
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yields a second-order approximation, and the flux boundary condition −κT (∂T/∂x) = qb

turns into

T̃1 = T̃2 + ∆x
qb

κT

. (4.40)

There are cases, however, when the situation is less ideal. This occurs when a total,
advective plus diffusive, flux boundary condition is specified (uT − κT (∂T/∂x) = qb).
Either the ending node is at the boundary, complicating the discretization of the derivative, or
it is placed beyond the boundary and the value of T must be extrapolated. In the latter case,
extrapolation is performed with second-order accuracy,
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8
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, (4.41)

and the total flux condition becomes

ub

T̃1 + T̃2

2
− κT

T̃2 − T̃1

∆x
= qb (4.42)

yielding the following condition on the end value T̃1:

Boundary aligned with grid node
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prescribing the value of the variable (e.g. advective flux) 
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boundary (Figure 4-6 right side) so that

T̃m = Tb, (4.38)

requires no interpolation and forms an exact implementation.

21 m

✲✛ Domain of interest

✻
Boundary in xb

✻
Boundary with grid node

✲✛ ∆x

Figure 4-6 Grid nodes cover the inte-
rior of the domain of interest. Addi-
tional nodes may be placed beyond a
boundary as illustrated on the left side
or placed on the boundary as illustrated
on the right. The numerical implemen-
tation of the boundary condition de-
pends on the arrangement selected.

If instead the boundary condition is in the form of a flux, it is more practical to have
two grid nodes straddling the boundary, with one slightly outside the domain and the other
slightly inside (Figure 4-6 left side). In this manner, the derivative of the variable is more
precisely formulated at the location of the boundary. With the index notation of Figure 4-6,
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yields a second-order approximation, and the flux boundary condition −κT (∂T/∂x) = qb

turns into

T̃1 = T̃2 + ∆x
qb

κT

. (4.40)

There are cases, however, when the situation is less ideal. This occurs when a total,
advective plus diffusive, flux boundary condition is specified (uT − κT (∂T/∂x) = qb).
Either the ending node is at the boundary, complicating the discretization of the derivative, or
it is placed beyond the boundary and the value of T must be extrapolated. In the latter case,
extrapolation is performed with second-order accuracy,

T̃1 + T̃2

2
≃ T (xb) +
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, (4.41)

and the total flux condition becomes

ub

T̃1 + T̃2

2
− κT

T̃2 − T̃1

∆x
= qb (4.42)

yielding the following condition on the end value T̃1:
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are introduced to facilitate the implementation of the boundary condition. If the condition is
to specify the value Tb of the numerical variable T̃ , it is most natural to place a node at the
boundary (Figure 4-6 right side) so that

T̃m = Tb, (4.38)

requires no interpolation and forms an exact implementation.
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tional nodes may be placed beyond a
boundary as illustrated on the left side
or placed on the boundary as illustrated
on the right. The numerical implemen-
tation of the boundary condition de-
pends on the arrangement selected.

If instead the boundary condition is in the form of a flux, it is more practical to have
two grid nodes straddling the boundary, with one slightly outside the domain and the other
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yields a second-order approximation, and the flux boundary condition −κT (∂T/∂x) = qb
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. (4.40)

There are cases, however, when the situation is less ideal. This occurs when a total,
advective plus diffusive, flux boundary condition is specified (uT − κT (∂T/∂x) = qb).
Either the ending node is at the boundary, complicating the discretization of the derivative, or
it is placed beyond the boundary and the value of T must be extrapolated. In the latter case,
extrapolation is performed with second-order accuracy,
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and the total flux condition becomes
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yielding the following condition on the end value T̃1:
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are introduced to facilitate the implementation of the boundary condition. If the condition is
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If instead the boundary condition is in the form of a flux, it is more practical to have
two grid nodes straddling the boundary, with one slightly outside the domain and the other
slightly inside (Figure 4-6 left side). In this manner, the derivative of the variable is more
precisely formulated at the location of the boundary. With the index notation of Figure 4-6,
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yields a second-order approximation, and the flux boundary condition −κT (∂T/∂x) = qb

turns into

T̃1 = T̃2 + ∆x
qb
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. (4.40)

There are cases, however, when the situation is less ideal. This occurs when a total,
advective plus diffusive, flux boundary condition is specified (uT − κT (∂T/∂x) = qb).
Either the ending node is at the boundary, complicating the discretization of the derivative, or
it is placed beyond the boundary and the value of T must be extrapolated. In the latter case,
extrapolation is performed with second-order accuracy,
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and the total flux condition becomes
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yielding the following condition on the end value T̃1:
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are introduced to facilitate the implementation of the boundary condition. If the condition is
to specify the value Tb of the numerical variable T̃ , it is most natural to place a node at the
boundary (Figure 4-6 right side) so that

T̃m = Tb, (4.38)

requires no interpolation and forms an exact implementation.
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or placed on the boundary as illustrated
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tation of the boundary condition de-
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If instead the boundary condition is in the form of a flux, it is more practical to have
two grid nodes straddling the boundary, with one slightly outside the domain and the other
slightly inside (Figure 4-6 left side). In this manner, the derivative of the variable is more
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yields a second-order approximation, and the flux boundary condition −κT (∂T/∂x) = qb

turns into

T̃1 = T̃2 + ∆x
qb
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. (4.40)

There are cases, however, when the situation is less ideal. This occurs when a total,
advective plus diffusive, flux boundary condition is specified (uT − κT (∂T/∂x) = qb).
Either the ending node is at the boundary, complicating the discretization of the derivative, or
it is placed beyond the boundary and the value of T must be extrapolated. In the latter case,
extrapolation is performed with second-order accuracy,
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and the total flux condition becomes
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= qb (4.42)

yielding the following condition on the end value T̃1:
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are introduced to facilitate the implementation of the boundary condition. If the condition is
to specify the value Tb of the numerical variable T̃ , it is most natural to place a node at the
boundary (Figure 4-6 right side) so that

T̃m = Tb, (4.38)

requires no interpolation and forms an exact implementation.
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tional nodes may be placed beyond a
boundary as illustrated on the left side
or placed on the boundary as illustrated
on the right. The numerical implemen-
tation of the boundary condition de-
pends on the arrangement selected.

If instead the boundary condition is in the form of a flux, it is more practical to have
two grid nodes straddling the boundary, with one slightly outside the domain and the other
slightly inside (Figure 4-6 left side). In this manner, the derivative of the variable is more
precisely formulated at the location of the boundary. With the index notation of Figure 4-6,
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yields a second-order approximation, and the flux boundary condition −κT (∂T/∂x) = qb

turns into

T̃1 = T̃2 + ∆x
qb
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. (4.40)

There are cases, however, when the situation is less ideal. This occurs when a total,
advective plus diffusive, flux boundary condition is specified (uT − κT (∂T/∂x) = qb).
Either the ending node is at the boundary, complicating the discretization of the derivative, or
it is placed beyond the boundary and the value of T must be extrapolated. In the latter case,
extrapolation is performed with second-order accuracy,
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and the total flux condition becomes
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yielding the following condition on the end value T̃1:
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are introduced to facilitate the implementation of the boundary condition. If the condition is
to specify the value Tb of the numerical variable T̃ , it is most natural to place a node at the
boundary (Figure 4-6 right side) so that

T̃m = Tb, (4.38)

requires no interpolation and forms an exact implementation.
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If instead the boundary condition is in the form of a flux, it is more practical to have
two grid nodes straddling the boundary, with one slightly outside the domain and the other
slightly inside (Figure 4-6 left side). In this manner, the derivative of the variable is more
precisely formulated at the location of the boundary. With the index notation of Figure 4-6,
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yields a second-order approximation, and the flux boundary condition −κT (∂T/∂x) = qb

turns into

T̃1 = T̃2 + ∆x
qb
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. (4.40)

There are cases, however, when the situation is less ideal. This occurs when a total,
advective plus diffusive, flux boundary condition is specified (uT − κT (∂T/∂x) = qb).
Either the ending node is at the boundary, complicating the discretization of the derivative, or
it is placed beyond the boundary and the value of T must be extrapolated. In the latter case,
extrapolation is performed with second-order accuracy,
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and the total flux condition becomes
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yielding the following condition on the end value T̃1:diffusiveadvective
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Operator atm− 2

Operator atm− 1

?
m

m− 1

m + 1

Dirichlet condition
✻

m− 2

m− 4
Figure 4-7 An operator spanning 2
points on each side of the calculation
point can be applied only up to m − 2
if a single Dirichlet condition is pre-
scribed. When applying the same op-
erator at m − 1 we face the problem
that the value atm + 1 does not exist.

4.8 Accuracy and errors
Errors in a numerical model can be of several types. Following Ferziger and Perić (1999) we
classify them according to their origin.

• Modeling errors: This error is caused by the imperfections of the mathematical model
in representing the physical system. It is thus the difference between the evolution
of the real system and that of the exact solution of its mathematical representation.
Earlier in this chapter we introduced simplifications to the equations and added pa-
rameterizations of unresolved processes, which all introduce errors of representation.
Furthermore, even if the model formulation had been ideal, coefficients remain imper-
fecly known. Uncertainties in the accompanying boundary conditions also contribute
to modeling errors.

• Discretization errors: This error is introduced when the original equations are approx-
imated to transform them into a computer code. It is thus the difference between the
exact solution of the continuous problem and the exact numerical solution of the dis-
cretized equations. Examples are the replacement of derivatives by finite differences
and the use of guesses in predictor-corrector schemes.

• Iteration errors: This error originates with the use of iterative methods to perform
intermediate steps in the algorithm and is thus measured as the difference between the
exact solution of the discrete equations and the numerical solution actually obtained.
An example is the use of the so-called Jacobi method to invert a matrix at some stage
of the calculations: for the sake of time, the iterative process is interrupted before full
convergence is reached.

• Rounding errors: These errors are due to the fact that only a finite number of digits are
used in the computer to represent real numbers.

A well constructed model should ensure that

rounding errors≪ iteration errors≪ discretization errors≪ modeling errors.

Numerical Implementation of Boundary Conditions
higher order operators ..
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Obviously, d is much less than H , and the boundary layer occupies a very small portion of
the flow domain. For the oceanic values cited above (νE = 10−2 m2/s and Ω = 10−4 s−1),
d is about 10 m.

Because of the Coriolis effect, the frictional boundary layer of geophysical flows, called
the Ekman layer, differs greatly from the boundary layer in nonrotating fluids. Although, the
traditional boundary layer has no particular thickness and grows either downstream or with
time, the existence of the depth scale d in rotating fluids suggests that the Ekman layer can
be characterized by a fixed thickness. [Note that as the rotational effects disappear (Ω→ 0 ),
d tends to infinity, exemplifying this essential difference between rotating and nonrotating
fluids.] The rotation not only imparts a fixed length scale to the boundary layer, but we
will now show that it also changes the direction of the velocity vector when approaching the
boundary, leading to transverse currents.

8.3 The bottom Ekman layer

Let us consider a uniform, geostrophic flow in a homogeneous fluid over a flat bottom (Figure
8-3). This bottom exerts a frictional stress against the flow, bringing the velocity gradually to
zero within a thin layer above the bottom. We now solve for the structure of this layer.

u = 0

z

z = 0

Ekman
layer

Interior

u = ū

u(z) d

Figure 8-3 Frictional influence of a flat bottom on a uniform flow in a rotating framework.

In the absence of horizontal gradients (the interior flow is said to be uniform) and of
temporal variations, continuity equation (4.21d) yields ∂w/∂z = 0 and thus w = 0 in the
thin layer near the bottom. The remaining equations are the following reduced forms of
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the presence of substantial motions2. Looking back, we note that the main reason behind this

reduction is the strong geometric disparity of geophysical flows (H ≪ L).

In rare instances when this disparity between horizontal and vertical scales does not exist,

such as in convection plumes and short internal waves, the hydrostatic approximation ceases

to hold and the vertical-momentum balance includes a three-way balance between vertical

acceleration, pressure gradient and buoyancy.

4.4 Recapitulation of equations governing geophysical flows

The Boussinesq approximation performed in the previous chapter and the preceding devel-

opments have greatly simplified the equations. We recapitulate them here.
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z −momentum: 0 = −
∂p

∂z
− ρg (4.21c)

continuity:
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, (4.21e)

where the reference density ρ0 and the gravitational acceleration g are constant coefficients,
the Coriolis parameter f = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE and κE may taken as constants or functions

of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
called primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations

2According to Nebeker (1995, page 51), the scientist deserving credit for the hydrostatic balance in geophysical

flows is Alexis Clairaut (1713–1765).
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where the reference density ρ0 and the gravitational acceleration g are constant coefficients,
the Coriolis parameter f = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE and κE may taken as constants or functions

of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
called primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations

2According to Nebeker (1995, page 51), the scientist deserving credit for the hydrostatic balance in geophysical

flows is Alexis Clairaut (1713–1765).
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can be written in conservative form:
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These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section 4.3 was developed to justify the neglect of some small terms.

But this does not necessarily imply that the remaining terms are equally large. We now wish

to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their last form (4.21a) and (4.21b)

scale sequentially as
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By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-

tant factor. Thus, the term ΩU is central to the preceding sequence. A division by ΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following

sequence of dimensionless ratios:
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The first ratio,

RoT =
1

ΩT
, (4.23)

is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,

inertial terms rotation frictional forces
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can be written in conservative form:
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These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section 4.3 was developed to justify the neglect of some small terms.

But this does not necessarily imply that the remaining terms are equally large. We now wish

to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their last form (4.21a) and (4.21b)

scale sequentially as
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By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-

tant factor. Thus, the term ΩU is central to the preceding sequence. A division by ΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following

sequence of dimensionless ratios:
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The first ratio,

RoT =
1

ΩT
, (4.23)

is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,

inertial terms rotation frictional forces
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Ro =
U

ΩL
, (4.24)

which compares advection to Coriolis force, is called the Rossby number 3 and is fundamental

in geophysical fluid dynamics. Like its temporal analogue RoT , it is at most on the order of

unity by virtue of (4.12). As a general rule, the characteristics of geophysical flows vary

greatly with the values of the Rossby numbers.

The next number is the product of the Rossby number byWL/UH , which is on the order
of one or less by virtue of (4.14). It will be shown in Section 11.5 that the ratioWL/UH is

generally on the order of the Rossby number itself. The next ratio, P/ρ0ΩLU , is on the order
of unity by virtue of (4.16).

The last two ratios measure the relative importance of horizontal and vertical friction. Of

the two, only the latter bears a name:

Ek =
νE

ΩH2
, (4.25)

is called the Ekman number. For geophysical flows, this number is small. For example,

with an eddy viscosity νE as large as 10−2 m2/s, Ω = 7.3 × 10−5 s−1 and H = 100 m,

Ek = 1.4 × 10−2. The Ekman number is even smaller in laboratory experiments where the

viscosity reverts to its molecular value and the height scaleH is much more modest. [Typical

experimental values are Ω = 4 s−1, H = 20 cm, and ν(water) = 10−6 m2/s, yielding Ek = 6
× 10−6.] Although the Ekman number is small, indicating that the dissipative terms in the

momentum equation may be negligible, these need to be retained. The reason will become

clear in Chapter 8, when it is shown that vertical friction creates a very important boundary

layer.

In nonrotating fluid dynamics, it is customary to compare inertial and frictional forces

by defining the Reynolds number, Re. In the preceding scaling, inertial and frictional forces
were not compared to each other but each was instead compared to the Coriolis force, yielding

the Rossby and Ekman numbers, respectively. There exists a simple relationship between the

three numbers and the aspect ratioH/L:
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=
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·
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=
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Ek

(

L
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)2

. (4.26)

Since the Rossby number is on the order of unity or slightly less, but the Ekman number and

the aspect ratioH/L are both much smaller than unity, the Reynolds number of geophysical
flows is extremely large, even after the molecular viscosity has been replaced by a much

larger eddy viscosity.

With (4.16), the two terms in the hydrostatic equation (4.21c) scale respectively as

P

H
, g∆ρ

and the ratio of the latter over the former is

gH∆ρ

P
=

gH∆ρ

ρ0ΩLU
=

U

ΩL
·

gH∆ρ

ρ0U2
= Ro ·

gH∆ρ

ρ0U2
.

3See biographic note at the end of this chapter.

Ekman Number 
viscous force/rotation

Surface and Bottom Boundary Conditions  
for Momentum, the Ekman boundary Layers



4.5. DIMENSIONLESS NUMBERS 99

can be written in conservative form:

∂u

∂t
+

∂(uu)

∂x
+

∂(vu)

∂y
+

∂(wu)

∂z
− fv =

−
1

ρ0

∂p

∂x
+

∂

∂x

(

A
∂u

∂x

)

+
∂

∂y

(

A
∂u

∂y

)

+
∂

∂z

(

νE
∂u

∂z

)

(4.22a)

∂v

∂t
+

∂(uv)

∂x
+

∂(vv)

∂y
+

∂(wv)

∂z
+ fu =

−
1

ρ0

∂p

∂y
+

∂

∂x

(

A
∂v

∂x

)

+
∂

∂y

(

A
∂v

∂y

)

+
∂

∂z

(

νE
∂v

∂z

)

(4.22b)

∂ρ

∂t
+

∂(uρ)

∂x
+

∂(vρ)

∂y
+

∂(wρ)

∂z
=

∂

∂x

(

A
∂ρ

∂x

)

+
∂

∂y

(

A
∂ρ

∂y

)

+
∂

∂z

(

κE
∂ρ

∂z

)

, (4.22c)

These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section 4.3 was developed to justify the neglect of some small terms.

But this does not necessarily imply that the remaining terms are equally large. We now wish

to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their last form (4.21a) and (4.21b)

scale sequentially as

U

T
,

U2

L
,

U2

L
,

WU

H
, ΩU ,

P

ρ0L
,

AU

L2
,

νEU

H2
.

By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-

tant factor. Thus, the term ΩU is central to the preceding sequence. A division by ΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following

sequence of dimensionless ratios:
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The first ratio,

RoT =
1

ΩT
, (4.23)

is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,

inertial terms rotation frictional forces
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which compares advection to Coriolis force, is called the Rossby number 3 and is fundamental

in geophysical fluid dynamics. Like its temporal analogue RoT , it is at most on the order of

unity by virtue of (4.12). As a general rule, the characteristics of geophysical flows vary

greatly with the values of the Rossby numbers.

The next number is the product of the Rossby number byWL/UH , which is on the order
of one or less by virtue of (4.14). It will be shown in Section 11.5 that the ratioWL/UH is

generally on the order of the Rossby number itself. The next ratio, P/ρ0ΩLU , is on the order
of unity by virtue of (4.16).

The last two ratios measure the relative importance of horizontal and vertical friction. Of

the two, only the latter bears a name:

Ek =
νE

ΩH2
, (4.25)

is called the Ekman number. For geophysical flows, this number is small. For example,

with an eddy viscosity νE as large as 10−2 m2/s, Ω = 7.3 × 10−5 s−1 and H = 100 m,

Ek = 1.4 × 10−2. The Ekman number is even smaller in laboratory experiments where the

viscosity reverts to its molecular value and the height scaleH is much more modest. [Typical

experimental values are Ω = 4 s−1, H = 20 cm, and ν(water) = 10−6 m2/s, yielding Ek = 6
× 10−6.] Although the Ekman number is small, indicating that the dissipative terms in the

momentum equation may be negligible, these need to be retained. The reason will become

clear in Chapter 8, when it is shown that vertical friction creates a very important boundary

layer.

In nonrotating fluid dynamics, it is customary to compare inertial and frictional forces

by defining the Reynolds number, Re. In the preceding scaling, inertial and frictional forces
were not compared to each other but each was instead compared to the Coriolis force, yielding

the Rossby and Ekman numbers, respectively. There exists a simple relationship between the

three numbers and the aspect ratioH/L:

Re =
UL

νE
=

U

ΩL
·

ΩH2

νE
·

L2

H2
=

Ro

Ek

(

L

H

)2

. (4.26)

Since the Rossby number is on the order of unity or slightly less, but the Ekman number and

the aspect ratioH/L are both much smaller than unity, the Reynolds number of geophysical
flows is extremely large, even after the molecular viscosity has been replaced by a much

larger eddy viscosity.

With (4.16), the two terms in the hydrostatic equation (4.21c) scale respectively as
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and the ratio of the latter over the former is
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3See biographic note at the end of this chapter.
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These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section 4.3 was developed to justify the neglect of some small terms.

But this does not necessarily imply that the remaining terms are equally large. We now wish

to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their last form (4.21a) and (4.21b)

scale sequentially as
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By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-

tant factor. Thus, the term ΩU is central to the preceding sequence. A division by ΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following

sequence of dimensionless ratios:
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The first ratio,

RoT =
1

ΩT
, (4.23)

is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,

inertial terms rotation frictional forces
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which compares advection to Coriolis force, is called the Rossby number 3 and is fundamental

in geophysical fluid dynamics. Like its temporal analogue RoT , it is at most on the order of

unity by virtue of (4.12). As a general rule, the characteristics of geophysical flows vary

greatly with the values of the Rossby numbers.

The next number is the product of the Rossby number byWL/UH , which is on the order
of one or less by virtue of (4.14). It will be shown in Section 11.5 that the ratioWL/UH is

generally on the order of the Rossby number itself. The next ratio, P/ρ0ΩLU , is on the order
of unity by virtue of (4.16).

The last two ratios measure the relative importance of horizontal and vertical friction. Of

the two, only the latter bears a name:

Ek =
νE

ΩH2
, (4.25)

is called the Ekman number. For geophysical flows, this number is small. For example,

with an eddy viscosity νE as large as 10−2 m2/s, Ω = 7.3 × 10−5 s−1 and H = 100 m,

Ek = 1.4 × 10−2. The Ekman number is even smaller in laboratory experiments where the

viscosity reverts to its molecular value and the height scaleH is much more modest. [Typical

experimental values are Ω = 4 s−1, H = 20 cm, and ν(water) = 10−6 m2/s, yielding Ek = 6
× 10−6.] Although the Ekman number is small, indicating that the dissipative terms in the

momentum equation may be negligible, these need to be retained. The reason will become

clear in Chapter 8, when it is shown that vertical friction creates a very important boundary

layer.

In nonrotating fluid dynamics, it is customary to compare inertial and frictional forces

by defining the Reynolds number, Re. In the preceding scaling, inertial and frictional forces
were not compared to each other but each was instead compared to the Coriolis force, yielding

the Rossby and Ekman numbers, respectively. There exists a simple relationship between the

three numbers and the aspect ratioH/L:
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Since the Rossby number is on the order of unity or slightly less, but the Ekman number and

the aspect ratioH/L are both much smaller than unity, the Reynolds number of geophysical
flows is extremely large, even after the molecular viscosity has been replaced by a much

larger eddy viscosity.

With (4.16), the two terms in the hydrostatic equation (4.21c) scale respectively as
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and the ratio of the latter over the former is

gH∆ρ
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3See biographic note at the end of this chapter.
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The preceding considerations ignored the effect of rotation. When rotation is present, the
character of the boundary layer changes dramatically.

8.2 Friction and rotation
After the development of the equations governing geophysicalmotions (Sections 4.1 to 4.4), a
scale analysis was performed to evaluate the relative importance of the various terms (Section
4.5). In the horizontalmomentum equations [(4.21a) and (4.21b)], each termwas compared to
the Coriolis term, and a corresponding dimensionless ratio was defined. For vertical friction,
the dimensionless ratio was the Ekman number:

Ek =
νE

ΩH2
, (8.11)

where νE is the eddy viscosity, Ω the ambient rotation rate, andH the height (depth) scale of
the motion (the total thickness if the fluid is homogeneous).

Typical geophysical flows, as well as laboratory experiments, are characterized by very
small Ekman numbers. For example, in the ocean at midlatitudes (Ω ≃ 10−4 s−1), motions
modeled with an eddy-intensified viscosity νE = 10

−2 m2/s (much larger than the molecular
viscosity of water, equal to 1.0 × 10−6 m2/s) and extending over a depth of about 1000 m
have an Ekman number of about 10−4.

The smallness of the Ekman number indicates that vertical friction plays a very minor
role in the balance of forces and may, consequently, be omitted from the equations. This is
usually done and with great success. However, something is then lost. The frictional terms
happen to be those with the highest order of derivatives among all terms of the momentum
equations. Thus, when friction is neglected, the order of the set of differential equations is
reduced, and not all boundary conditions can be applied simultaneously. Usually, slipping
along the bottom must be accepted.

Since Ludwig Prandtl2 and his general theory of boundary layers, we know that in such
a circumstance the fluid system exhibits two distinct behaviors: At some distance from the
boundaries, in what is called the interior, friction is usually negligible, whereas, near a bound-
ary (wall) and across a short distance, called the boundary layer, friction acts to bring the
finite interior velocity to zero at the wall.

The thickness, d, of this thin layer is such that the Ekman number is on the order of one
at that scale, allowing friction to be a dominant force:

νE

Ωd2
∼ 1,

which leads to

d ∼

√

νE

Ω
. (8.12)

2See biography at the end of this chapter.

1

with d << H

Surface and Bottom Boundary Conditions  
for Momentum, the Ekman boundary Layers



4.5. DIMENSIONLESS NUMBERS 99

can be written in conservative form:

∂u

∂t
+

∂(uu)

∂x
+

∂(vu)

∂y
+

∂(wu)

∂z
− fv =

−
1

ρ0

∂p

∂x
+

∂

∂x

(

A
∂u

∂x

)

+
∂

∂y

(

A
∂u

∂y

)

+
∂

∂z

(

νE
∂u

∂z

)

(4.22a)

∂v

∂t
+

∂(uv)

∂x
+

∂(vv)

∂y
+

∂(wv)

∂z
+ fu =

−
1

ρ0

∂p

∂y
+

∂

∂x

(

A
∂v

∂x

)

+
∂

∂y

(

A
∂v

∂y

)

+
∂

∂z

(

νE
∂v

∂z

)

(4.22b)

∂ρ

∂t
+

∂(uρ)

∂x
+

∂(vρ)

∂y
+

∂(wρ)

∂z
=

∂

∂x

(

A
∂ρ

∂x

)

+
∂

∂y

(

A
∂ρ

∂y

)

+
∂

∂z

(

κE
∂ρ

∂z

)

, (4.22c)

These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section 4.3 was developed to justify the neglect of some small terms.

But this does not necessarily imply that the remaining terms are equally large. We now wish

to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their last form (4.21a) and (4.21b)
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By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-

tant factor. Thus, the term ΩU is central to the preceding sequence. A division by ΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following
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The first ratio,
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is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,
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These will be found useful in numerical discretization.

4.5 Important dimensionless numbers

The scaling analysis of Section 4.3 was developed to justify the neglect of some small terms.

But this does not necessarily imply that the remaining terms are equally large. We now wish

to estimate the relative sizes of those terms that have been retained.

The terms of the horizontal momentum equations in their last form (4.21a) and (4.21b)

scale sequentially as

U

T
,

U2

L
,

U2

L
,

WU

H
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ρ0L
,

AU

L2
,

νEU

H2
.

By definition, geophysical fluid dynamics treats those motions in which rotation is an impor-

tant factor. Thus, the term ΩU is central to the preceding sequence. A division by ΩU , to
measure the importance of all other terms relative to the Coriolis term, yields the following

sequence of dimensionless ratios:

1
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·
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ρ0ΩLU
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A
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The first ratio,

RoT =
1

ΩT
, (4.23)

is called the temporal Rossby number. It compares the local time rate of change of the velocity

to the Coriolis force and is on the order of unity or less, as has been repeatedly stated [see

(4.11)]. The next number,

frictional forcesrotation

Dominant balance is between rotation and vertical friction terms
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the presence of substantial motions2. Looking back, we note that the main reason behind this

reduction is the strong geometric disparity of geophysical flows (H ≪ L).

In rare instances when this disparity between horizontal and vertical scales does not exist,

such as in convection plumes and short internal waves, the hydrostatic approximation ceases

to hold and the vertical-momentum balance includes a three-way balance between vertical

acceleration, pressure gradient and buoyancy.

4.4 Recapitulation of equations governing geophysical flows

The Boussinesq approximation performed in the previous chapter and the preceding devel-

opments have greatly simplified the equations. We recapitulate them here.
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(4.21b)

z −momentum: 0 = −
∂p

∂z
− ρg (4.21c)

continuity:
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, (4.21e)

where the reference density ρ0 and the gravitational acceleration g are constant coefficients,
the Coriolis parameter f = 2Ω sinϕ is dependent on latitude or taken as a constant, and the
eddy viscosity and diffusivity coefficientsA, νE and κE may taken as constants or functions

of flow variables and grid parameters. These five equations for the five variables u, v,w, p and
ρ form a closed set of equations, the cornerstone of geophysical fluid dynamics, sometimes
called primitive equations.

Using the continuity equation (4.21d), the horizontal-momentum and density equations

2According to Nebeker (1995, page 51), the scientist deserving credit for the hydrostatic balance in geophysical

flows is Alexis Clairaut (1713–1765).
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was originally published in his 1902 doctoral thesis and again, in a more complete article,
three years later (Ekman, 1905). In a subsequent article (Ekman, 1906), he mentioned the
relevance of his theory to the lower atmosphere, where the wind approaches a geostrophic
value with increasing height.

z

z = 0

Ekman
layer

Interior (u, v) = (ū, v̄)

d
(u, v)

Sea surface
Wind stress

Figure 8-6 The surface Ekman layer generated by a wind stress on the ocean.

Let us consider the situation depicted in Figure 8-6, where an ocean region with interior
flow field (ū, v̄) is subjected to a wind stress (τx, τy) along its surface. Again, assuming
steady conditions, a homogeneous fluid, and a geostrophic interior, we obtain the following
equations and boundary conditions for the flow field (u, v) in the surface Ekman layer:

− f (v − v̄) = νE

∂2u

∂z2
(8.32a)

+ f (u− ū) = νE

∂2v

∂z2
(8.32b)

Surface (z = 0) : ρ0νE

∂u

∂z
= τ

x
, ρ0νE

∂v

∂z
= τ

y (8.32c)

Toward interior (z → −∞) : u = ū, v = v̄. (8.32d)
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flow field (ū, v̄) is subjected to a wind stress (τx, τy) along its surface. Again, assuming
steady conditions, a homogeneous fluid, and a geostrophic interior, we obtain the following
equations and boundary conditions for the flow field (u, v) in the surface Ekman layer:

− f (v − v̄) = νE

∂2u

∂z2
(8.32a)

+ f (u− ū) = νE
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Geostrophic interior flow

Ageostrophic boundary (Ekman) flow
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d
(u, v)

Sea surface
Wind stress

Figure 8-6 The surface Ekman layer generated by a wind stress on the ocean.

Let us consider the situation depicted in Figure 8-6, where an ocean region with interior
flow field (ū, v̄) is subjected to a wind stress (τx, τy) along its surface. Again, assuming
steady conditions, a homogeneous fluid, and a geostrophic interior, we obtain the following
equations and boundary conditions for the flow field (u, v) in the surface Ekman layer:

− f (v − v̄) = νE

∂2u

∂z2
(8.32a)

+ f (u− ū) = νE
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230 CHAPTER 8. EKMAN LAYER

Figure 8-7 Structure of the surface Ekman layer. The figure is drawn for the Northern Hemisphere
(f > 0), and the deflection is to the right of the surface stress. The reverse holds for the Southern
Hemisphere.

The solution to this problem is

u = ū +

√
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ρ0fd
e

z/d

[
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cos
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d
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π
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(8.33a)
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[
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x

sin

(
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d
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π

4

)

+ τ
y

cos

(
z

d
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π

4

)]

, (8.33b)

in which we note that the departure from the interior flow (ū, v̄) is exclusively due to the wind
stress. In other words, it does not depend on the interior flow. Moreover, this wind-driven
flow component is inversely proportional to the Ekman-layer depth, d, and may be very large.
Physically, if the fluid is almost inviscid (small ν, hence short d), a moderate surface stress
can generate large drift velocities.

The wind-driven horizontal transport in the surface Ekman layer has components given
by

U =

∫ 0

−∞
(u− ū) dz =

1

ρ0f
τ

y (8.34a)

V =

∫ 0

−∞
(v − v̄) dz =

−1

ρ0f
τ

x
. (8.34b)

Surprisingly, it is oriented perpendicular to the wind stress (Figure 8-7), to the right in the
Northern Hemisphere and to the left in the Southern Hemisphere. This fact explains why
icebergs, which float mostly underwater, systematically drift to the right of the wind in the
North Atlantic, as observed by Fridtjof Nansen.

Ekman Transport
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Figure 8-8 Ekman pumping in an ocean subject to sheared winds (case of Northern Hemisphere).

As for the bottom Ekman layer, let us determine the divergence of the flow, integrated
over the boundary layer:

∫ 0

−∞

(
∂u

∂x
+

∂v

∂y

)

dz =
1

ρ0

[
∂

∂x

(
τy

f

)

−
∂

∂y

(
τx

f

)]

. (8.35)

At constant f , the contribution is entirely due to the wind stress since the interior geostrophic
flow is nondivergent. It is proportional to the wind-stress curl and, most importantly, it is
independent of the value of the viscosity. It can be shown furthermore that this property
continues to hold even when the turbulent eddy viscosity varies spatially (see Analytical
Problem 8-7).

If the wind stress has a non-zero curl, the divergence of the Ekman transport must be
provided by a vertical velocity throughout the interior. A vertical integration of the continuity
equation, (4.21d), across the Ekman layer with w(z = 0) and w(z → −∞) = w̄ yields

w̄ = +

∫ 0

−∞

(
∂u

∂x
+

∂v
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)

dz

=
1

ρ0

[
∂

∂x

(
τy

f

)

−
∂

∂y

(
τx

f

)]

= wEk.

(8.36)

This vertical velocity is called Ekman pumping. In the Northern Hemisphere (f > 0), a
clockwise wind pattern (negative curl) generates a downwelling (Figure 8-8a), whereas a
counterclockwise wind pattern causes upwelling (Figure 8-8b). The directions are opposite
in the Southern Hemisphere. Ekman pumping is a very effective mechanism by which winds
drive subsurface ocean currents ( Pedlosky, 1996; see also Chapter 20).

8.7 The Ekman layer in real geophysical flows
The preceding models of bottom and surface Ekman layers are highly idealized, and we
do not expect their solutions to match actual atmospheric and oceanic observations closely
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Obviously, d is much less than H , and the boundary layer occupies a very small portion of
the flow domain. For the oceanic values cited above (νE = 10−2 m2/s and Ω = 10−4 s−1),
d is about 10 m.

Because of the Coriolis effect, the frictional boundary layer of geophysical flows, called
the Ekman layer, differs greatly from the boundary layer in nonrotating fluids. Although, the
traditional boundary layer has no particular thickness and grows either downstream or with
time, the existence of the depth scale d in rotating fluids suggests that the Ekman layer can
be characterized by a fixed thickness. [Note that as the rotational effects disappear (Ω→ 0 ),
d tends to infinity, exemplifying this essential difference between rotating and nonrotating
fluids.] The rotation not only imparts a fixed length scale to the boundary layer, but we
will now show that it also changes the direction of the velocity vector when approaching the
boundary, leading to transverse currents.

8.3 The bottom Ekman layer

Let us consider a uniform, geostrophic flow in a homogeneous fluid over a flat bottom (Figure
8-3). This bottom exerts a frictional stress against the flow, bringing the velocity gradually to
zero within a thin layer above the bottom. We now solve for the structure of this layer.

u = 0

z

z = 0

Ekman
layer

Interior

u = ū

u(z) d

Figure 8-3 Frictional influence of a flat bottom on a uniform flow in a rotating framework.

In the absence of horizontal gradients (the interior flow is said to be uniform) and of
temporal variations, continuity equation (4.21d) yields ∂w/∂z = 0 and thus w = 0 in the
thin layer near the bottom. The remaining equations are the following reduced forms of

Surface and Bottom Boundary Conditions  
for Momentum, the Ekman bottom Layers
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(4.21a) through (4.21c):

− fv = −
1

ρ0

∂p

∂x
+ νE

∂2u

∂z2
(8.13a)

+ fu = −
1

ρ0

∂p

∂y
+ νE

∂2v

∂z2
(8.13b)

0 = −
1

ρ0

∂p

∂z
, (8.13c)

where f is the Coriolis parameter (taken as a constant here), ρ0 is the fluid density, and νE is
the eddy viscosity (taken as a constant for simplicity). The horizontal gradient of the pressure
p is retained because a uniform flow requires a uniformly varying pressure (Section 7.1). For
convenience, we align the x–axis with the direction of the interior flow, which is of velocity
ū. The boundary conditions are then

Bottom (z = 0) : u = 0, v = 0, (8.14a)
Toward the interior (z ≫ d) : u = ū, v = 0, p = p̄(x, y). (8.14b)

By virtue of equation (8.13c), the dynamic pressure p is the same at all depths; thus, p =

p̄(x, y) in the outer flow as well as throughout the boundary layer. In the outer flow (z ≫ d,
mathematically equivalent to z → ∞), equations (8.13a) and (8.13b) relate the velocity to
the pressure gradient:

0 = −
1

ρ0

∂p̄

∂x
,

f ū = −
1

ρ0

∂p̄

∂y
= constant.

Substitution of these derivatives in the same equations, which are now taken at any depth,
yields

− fv = νE

d2u

dz2
(8.15a)

f (u − ū) = νE

d2v

dz2
. (8.15b)

Seeking a solution of the type u = ū + A exp(λz) and v = B exp(λz), we find that λ obeys
ν2λ4 + f2 = 0; that is,

λ = ± (1± i )
1

d

where the distance d is defined by

d =

√

2νE

f
. (8.16)
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By virtue of equation (8.13c), the dynamic pressure p is the same at all depths; thus, p =

p̄(x, y) in the outer flow as well as throughout the boundary layer. In the outer flow (z ≫ d,
mathematically equivalent to z → ∞), equations (8.13a) and (8.13b) relate the velocity to
the pressure gradient:

0 = −
1

ρ0

∂p̄

∂x
,

f ū = −
1

ρ0

∂p̄

∂y
= constant.

Substitution of these derivatives in the same equations, which are now taken at any depth,
yields

− fv = νE

d2u

dz2
(8.15a)

f (u − ū) = νE

d2v

dz2
. (8.15b)

Seeking a solution of the type u = ū + A exp(λz) and v = B exp(λz), we find that λ obeys
ν2λ4 + f2 = 0; that is,

λ = ± (1± i )
1

d

where the distance d is defined by

d =

√

2νE

f
. (8.16)
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Figure 8-4 The velocity spiral in the bottom Ekman layer. The figure is drawn for the Northern
Hemisphere (f > 0), and the deflection is to the left of the current above the layer. The reverse holds
for the Southern Hemisphere.

Here, we have restricted ourselves to cases with positive f (Northern Hemisphere). Note
the similarity to (8.12). Boundary conditions (8.14b) rule out the exponentially growing
solutions, leaving

u = ū + e
−z/d

(

A cos
z

d
+ B sin

z

d

)

(8.17a)

v = e
−z/d

(

B cos
z

d
− A sin

z

d

)

, (8.17b)

and the application of the remaining boundary conditions (8.14a) yields A = −ū, B = 0, or

u = ū

(

1− e
−z/d

cos
z

d

)

(8.18a)

v = ū e
−z/d

sin
z

d
. (8.18b)

This solution has a number of important properties. First and foremost, we notice that the
distance over which it approaches the interior solution is on the order of d. Thus, expression
(8.16) gives the thickness of the boundary layer. For this reason, d is called the Ekman depth.
A comparison with (8.12) confirms the earlier argument that the boundary-layer thickness is
the one corresponding to a local Ekman number near unity.

The preceding solution also tells us that there is, in the boundary layer, a flow transverse
to the interior flow (v ̸= 0). Very near the bottom (z → 0), this component is equal to the
downstream velocity (u ∼ v ∼ ūz/d), thus implying that the near-bottom velocity is at 45
degrees to the left of the interior velocity (Figure 8-4). (The boundary flow is to the right of
the interior flow for f < 0.) Further up, where u reaches a first maximum (z = 3πd/4), the
velocity in the direction of the flow is greater than in the interior (u = 1.07ū). ( Viscosity can
occasionally fool us!)

It is instructive to calculate the net transport of fluid transverse to the main flow:

V =

∫ ∞

0
v dz =

ūd

2
, (8.19)


