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MOTIVATIONS

To study the stability properties of bottom
intensified boundary currents in the ocean (and of
mean winds in the atmosphere) in presence of
coastal mountains

To extend the model of Samelson and Pedlosky
(JFM, 1990) to a flow confined in a channel

To ‘'mimic’ the dynamics of the boundary currents
in the eastern side of the Labrador Sea
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http://seawifs_.gsfc._nasa.gov/seawifs.ht_ml
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TOPEX Sea Surface Height Variability (mm)
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Confirmed by
surface drifters
(Fratanton,
2001) and sub-
3 e surface Palace
floats
(Lavender,
2001) as deep
as 1500m

After Prater (2002)




Distance north (km)

200
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Location/size of all
the eddies observed
using TOPEX data
between 94 and '99.

Lilly et al, Progress in
Oceanography



* pre-1996: convective lenses, mainly AC,
radius of ~ 10-12 km, formed in the middle
of the basin

* post-1996: eddies form along the coast of
Greenland, bigger (R~30-35km), barotropic
structure with double core, move into the
interior as AC or dipoles and are responsible
for the restratification of the Labrador Sea
after deep convection
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FiG. 8. A sequence of snapshots of relative vorticity (10% ') and velocity (arrows) in 107-m depth in the Labrador Sea in steps of 12 days, starting at 16 Jan.

: e Er Note that only every second
grid point is shown for velocities.

.. and from numerical simulations
Eden and Boning, JPO, 2003



The channel model set-up




A flow is nearly geostrophic if

 Horizontal accelerations are small
compared to the Coriolis term )
R, =U/(f,L)<<1

« Variation if f are small on the horizontal
scale of the flow ——)> PBL/f,<<1

* Fractional variations in total depth H are

small

> |h’|/H<<1, where h=H=h’(x,y)
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aQt + J(Wz 2 Q ) VV4W1

0, :V2W1 Ky, —w,)+ Py
0, :V2W2 -F, (v, —w )+ By +h(x,Y)
Assume H1=H2=H

Lr=(g'H)"/f, U and Ly used to scale horizontal length,
velocities and time

l
Fi=F,= (fo"Lr?)/ (@'H) = 1




v, (x,y,t) ==Uy+ @ (x,y,t)
Wz(x yat) =¢2()C yat)

%0 o)+ % gy + L Yy = vy,

ot Ox
0 0o, d
qz+J(¢2,qz)+ ¢2 (ﬂ+7— )_ﬁ_Vy:W%
ot oy dx
where

h(x,y)=y(x)y
and
v(X)=c-b{tanh[(x+a)/c]-tanh[(x-a)/c]}/2tanh(a/c)

for g—e, y(X) = —




Q,=q,+ py+Uy
Q,=q,+pBy-Uy +y(x)y
where
q, :V2¢1_(¢ - 9,)
g, =V ¢2 - 9,)
flow ‘ I
slope flat slope
in 1and 3 Q,=q,— Uy +yy
in2 Q,=q,- Uy
e sy == -1y =+ %=y, <0
Loy yp == -0) =+ 2=, 50




k(k2+2)m2+[-k2(k2+2)U+
+(k*+1)(y+2B)]o+k(B-Uk?)(y+p-U)
U =4 Q=0




" Dy(X)=2 e 4 Agj e Y
= ®2(X)=Zj=1,4 AZJ e i(kj X-mt)

Matching conditions

1. ®,,d, continuous at x = +a

. Dy, Dyyyr Py, CcONtinuous at x = £a
3. @, D, — 0 for x| >

8 X 8 matrix eigenvalue problem for o=wg+in; and
A4j, Ay In each region



Local baroclinic

instability of flow

|

over variable topography
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‘RE 3. Frequency w, and growth rate w, versus interval half-length a for local instability

mmodes U= 1, #=0.25, 2, =0, a, = 2. ——, Mode 1;

. WKB result.

, mode 2; ——, mode 3; horizontal
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topography profile
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* Rossby wave k = (B/U)”

* Long baroclinic wave
k=-o B+y)BPB+y-U); Ay =- Ay P/(B+y)

* Short bottom trapped wave
== (Brr-UYe: Ay = Ay (B+-U)e?



Potential
vorticity
perturbation
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Summary I

 The bottom-trapped wave is responsible for the
persistence of the instability and for the vortex
formation, NO MATTER HOW SHORT IS THE
INTERVAL OF INSTABILITY

* Only local maxima in supercriticality are required for
the existence of unstable modes

 The bottom-trapped disturbance grows to balance the
variation in time of relative vorticity with the ambient
gradient of potential vorticity. Its confinement relies on
the interaction between the zonal component of the
perturbation velocity and the zonal gradient of the
bathymetry (which increases with latitude
localization)




 Laterally nonuniform vertical shear —
boundary confined currents

« Shear profile similar to the one observed
in the Labrador Sea
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Bottom Slope

Average bottom slope between 1200m and 2500m
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Schematic of the model geometry
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Growth rate for the linear system: 3-Layer case (solid)
and barotropic model (dashed; see Carnevale et al., 1999).
Condition for BAROCLINIC instability:

0
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Summary: what we may explain of the
Labrador Sea eddy field

 the rate of formation: about 1 every 7 days, but
likely seasonally varying. 35% of anticyclones
formed at the upstream step end up in the
Interior. The others are re-absorbed in the
current or merge

 the size (R ~ 35 km) and vertical extention of the
eddies

« the asymmetry between AC and C



more importantly:

Results suggest that the change in the
eddy field seen around 1996 may not be
due (only) to a strengthening of the
circulation at the surface (NAO?), but
could be associated to a strengthening
of the bottom current



Volumetric 6-S Censuses of

pverage
¥&ness.m  the Subpolar North Atlantic for
1964-1972 (red) and 1995-1997 (blue)
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