Ocean Modeling - EAS 8803

Barotropic Instability Introduction to Geophysical Fluid Dynamics
 Physical and Numerical Aspects

A simple exampleQ What makes a wave grow unstable
Q When is the flow unstable
Q What is the growth rate of instabilityRevisiting the simple example

Benoit Cushman-Roisin and Jean-Marie Beckers

Academic Press
Chapter 10

Primitive Equations

$$
\begin{aligned}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}-f v & =-\frac{1}{\rho_{0}} \frac{\partial p}{\partial x} \\
\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+f u & =-\frac{1}{\rho_{0}} \frac{\partial p}{\partial y} \\
0 & =-\frac{\partial p}{\partial z} \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z} & =0
\end{aligned}
$$

An example of Barotropic Instability

Figure 10-4 Finite-amplitude development of the instability of the shear flow depicted in Figure 10-2. The troughs and crests of the wave induce a vortex field, which, in turn, amplifies those troughs and crests. The wave does not travel but amplifies with time. [The sequence of figures shown here were generated with shearedflow.m developed in Chapter 16].

An example of Barotropic Instability

Figure 10-2 An idealized shear-flow profile that lends itself to analytic treatment. This profile meets both necessary conditions for instability and is found to be unstable to long waves.

$$
U_{\min }-\frac{\beta_{0} L^{2}}{2\left(\pi^{2}+k^{2} L^{2}\right)}<c_{r}<U_{\max }
$$

