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mechanics (see, for example, Lindzen, 1988; Kundu, 1990, Section 11-9). Here, we address

the problem with the inclusion of the Coriolis force but limit our investigation to establishing

general properties and solving one particular case.

10.2 Waves on a shear flow

To investigate the behavior of waves on an existing current in a relatively clear and tractable

formalism, it is customary to make the following assumptions: The fluid is homogeneous

and inviscid, and the bottom and the surface are flat and horizontal. The Coriolis parameter

is, however, allowed to vary (i.e., the beta effect is retained). The governing equations are

(Section 4.4)
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where the Coriolis parameter f = f0 + β0y varies with the northward coordinate y (Section
9.4). As demonstrated in Section 7.3, a horizontal flow that is initially uniform in the vertical

will, in the absence of vertical friction, remain so at all times. In GFD parlance, this is what

is called a barotropic flow, and we consider such a case. Consequently, we drop the terms

w∂u/∂z and w∂v/∂z in equations (10.1a) and (10.1b), respectively. According to (10.1d),
∂w/∂z must be z-independent, too, which implies that w is linear in z. But, because the
vertical velocity vanishes at both top and bottom, it must be zero everywhere (w = 0). The
continuity equation reduces to
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For the basic state, we choose a zonal current with arbitrarymeridional profile: u = ū(y),
v = 0. This is an exact solution to the nonlinear equations as long as the pressure profile,
p = p̄(y), satisfies the geostrophic balance

(f0 + β0y) ū(y) = −
1

ρ0

dp̄

dy
. (10.3)

Next, we add a small perturbation, meant to represent an arbitrary wave of weak ampli-
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Figure 10-4 Finite-amplitude development of the instability of the shear flow depicted in Figure 10-2.

The troughs and crests of the wave induce a vortex field, which, in turn, amplifies those troughs and

crests. The wave does not travel but amplifies with time. [The sequence of figures shown here were

generated with shearedflow.m developed in Chapter 16].

crests and troughs of the wave. The wave amplifies, and the basic shear flow cannot persist.

As the wave grows, nonlinear terms are no longer negligible, and some level of saturation is

reached. The ultimate state (Figure 10-4) is that of a series of clockwise vortices embedded

in a weakened ambient shear flow (Zabusky et al., 1979; Dritschel, 1989).

Lindzen (1988) offers an alternative mechanism for the instability, based on the fact that

there are two special locations across the system. The first is the critical level yc, where the

wave speed matches the velocity of the basic flow [cr = ū(yc)] and the other is y0 where the

vorticity of the basic flow reaches an extremum [where Expression (10.14) changes sign]. A

wave travelling in the direction of y0 to yc undergoes overreflection, that is, upon entering the

[y0,yc] interval, it is being reflected toward its region of origin with a greater amplitude than

on arrival. If there is a boundary or other place where the wave can be (simply) reflected, then

it returns toward the region of overreflection, and on it goes. The successive overreflections

of the echoing wave lead to exponential growth.
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where L is the domain’s meridional width and k the zonal wavenumber (Figure 10-1). The
westward velocity shift on the left side of (10.28) is related to the existence of planetary

waves [see the zonal phase speed, (9.30)]. The last inequality readily leads to an upper bound

for the growth rate kci. Knowing bounds for the phase speed cr and growth rate kci is useful

in the numerical search of stability threshold in specific applications (Proehl, 1996).

10.4 A simple example

The preceding considerations on the existence of instabilities and their properties are rather

abstract. So, let us work out an example to illustrate the concepts. For simplicity, we restrict

ourselves to the f -plane (β0 = 0) and take a shear flow that is piecewise linear (Figure 10-2):
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−L Figure 10-2 An idealized shear-flow

profile that lends itself to analytic treat-

ment. This profile meets both neces-

sary conditions for instability and is

found to be unstable to long waves.

where U is a positive constant and the domain width is now infinity. Although the second

derivative vanishes within each of the three segments of the domain, it is non-zero at their

junctions. As y increases, the first derivative dū/dy changes from zero to a positive value

and back to zero, so it can be said that the second derivative is positive at the first junction

(y = −L) and negative at the second (y = +L). Thus, d2ū/dy2 changes sign in the domain,

and this satisfies the first condition for the existence of instabilities. The second condition,

that expression (10.17), now reduced to
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Because the integral of P can only be positive, the preceding bracketed quantity must be
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Figure 10-1 The semicircle theorem. Growing perturbations of wavenumber k must have phase speeds
cr and growth rates kci such that the tip of the vector (cr , ci) falls within the half-circle constructed

from the minimum and maximum velocities of the ambient shear flow ū(y), as depicted in the figure.
When the beta effect is taken into account the tip of the vector must lie in the slightly enlarged domain

that includes the semi-circle and the light gray area.

This inequality implies that, in the complex plane, the number cr + ici must lie within

the circle centered at [(Umin + Umax)/2, 0] and of radius (Umax − Umin)/2. Since we are
interested in modes that grow in time, ci is positive, and only the upper half of that circle is

relevant (Figure 10-1). This result is called Howard’s semicircle theorem.

It is readily evident from inequality (10.26) or Figure 10-1 that ci is bounded above by

ci ≤
Umax − Umin

2
. (10.27)

The perturbation’s growth rate kci is thus likewise bounded above.

On the beta plane, the treatment of integrals and inequalities is somewhat more elaborate

but still feasible. Pedlosky (1987, Section 7.5) showed that the preceding inequalities on cr

and ci must be modified to
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