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where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)

w(z = b + h) =
∂

∂t
(b + h) + u

∂

∂x
(b + h) + v

∂

∂y
(b + h) (7.15)

=
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y

w(z = b) = u
∂b

∂x
+ v

∂b

∂y
. (7.16)

Equation (7.14) then becomes, using the surface elevation η = b + h − H :

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
vertical variable no longer appears, and the independent variables are x, y and t. This system
is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − g

∂η

∂x
(7.19a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − g

∂η

∂y
(7.19b)

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (7.19c)
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Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
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pressure over the ocean), this dynamic pressure is
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where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
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Equations of Geostrophic homogeneous !ows

describe unsteady motions of a 2D uniform density layer 
or 

of the depth average motion

shallow-water model or barotropic equations
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Linear Equations and waves solutions for homogeneous !ows

Chapter 9

Barotropic Waves

(November 30, 2007) SUMMARY: The aim of this chapter is to describe an assortment of

waves that can be supported by an inviscid, homogeneous fluid in rotation and to analyze

numerical grid arrangements that facilitate the simulation of wave propagation, in particular

for the prediction of tides and storm surges.

9.1 Linear wave dynamics

Chiefly because linear equations are most amenable to methods of solution, it is wise to gain

insight into geophysical fluid dynamics by elucidating the possible linear processes and inves-

tigating their properties before exploring more intricate, nonlinear dynamics. The governing

equations of the previous section are essentially nonlinear; consequently, their linearization

can proceed only by imposing restrictions on the flows under consideration.

The Coriolis acceleration terms present in the momentum equations [(4.21a) and (4.21b)]

are, by nature, linear and need not be subjected to any approximation. This situation is

extremely fortunate because these are the central terms of geophysical fluid dynamics. In

contrast, the so-called advective terms (or convective terms) are quadratic and undesirable at

this moment. Hence, our considerations will be restricted to low-Rossby-number situations:

Ro =
U

ΩL
! 1. (9.1)

This is usually accomplished by restricting the attention to relatively weak flows (small U ),
large scales (large L), or, in the laboratory, fast rotation (large Ω). The terms expressing the
local time rate of change of the velocity (∂u/∂t and ∂v/∂t) are linear and are retained here
in order to permit the investigation of unsteady flows. Thus, the temporal Rossby number is

taken as

RoT =
1

ΩT
∼ 1. (9.2)
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where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)

w(z = b + h) =
∂

∂t
(b + h) + u

∂

∂x
(b + h) + v

∂

∂y
(b + h) (7.15)

=
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y

w(z = b) = u
∂b

∂x
+ v

∂b

∂y
. (7.16)

Equation (7.14) then becomes, using the surface elevation η = b + h − H :

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
vertical variable no longer appears, and the independent variables are x, y and t. This system
is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − g

∂η

∂x
(7.19a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − g

∂η

∂y
(7.19b)

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (7.19c)
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Linear Equations and waves solutions for homogeneous !ows

Chapter 9

Barotropic Waves

(November 30, 2007) SUMMARY: The aim of this chapter is to describe an assortment of

waves that can be supported by an inviscid, homogeneous fluid in rotation and to analyze

numerical grid arrangements that facilitate the simulation of wave propagation, in particular

for the prediction of tides and storm surges.

9.1 Linear wave dynamics

Chiefly because linear equations are most amenable to methods of solution, it is wise to gain

insight into geophysical fluid dynamics by elucidating the possible linear processes and inves-

tigating their properties before exploring more intricate, nonlinear dynamics. The governing

equations of the previous section are essentially nonlinear; consequently, their linearization

can proceed only by imposing restrictions on the flows under consideration.

The Coriolis acceleration terms present in the momentum equations [(4.21a) and (4.21b)]

are, by nature, linear and need not be subjected to any approximation. This situation is

extremely fortunate because these are the central terms of geophysical fluid dynamics. In

contrast, the so-called advective terms (or convective terms) are quadratic and undesirable at

this moment. Hence, our considerations will be restricted to low-Rossby-number situations:

Ro =
U

ΩL
! 1. (9.1)

This is usually accomplished by restricting the attention to relatively weak flows (small U ),
large scales (large L), or, in the laboratory, fast rotation (large Ω). The terms expressing the
local time rate of change of the velocity (∂u/∂t and ∂v/∂t) are linear and are retained here
in order to permit the investigation of unsteady flows. Thus, the temporal Rossby number is

taken as

RoT =
1

ΩT
∼ 1. (9.2)
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Contrasting conditions (9.1) and (9.2), we conclude that we are about to consider slow flow

fields that evolve relatively fast. Aren’t we asking for the impossible? Not at all, for rapidly

moving disturbances do not necessarily require large velocities. In other words, information

may travel faster than material particles, and when this is the case, the flow takes the aspect

of a wave field. A typical example is the spreading of concentric ripples on the surface of a

pond after the throwing of a stone; energy radiates but there is no appreciable water movement

across the pond. In keeping with the foregoing quantities, a scale for the wave speed can be

defined as the velocity of a signal covering the distance L of the flow during the nominal

evolution time T , and, by virtue of restrictions (9.1) and (9.2), it can be compared to the flow
velocity:

C =
L

T
∼ ΩL " U. (9.3)

Thus, our present objective is to consider wave phenomena.

To shed the best possible light on the mechanisms of the basic wave processes typical in

geophysical flows, we further restrict our attention to homogeneous and inviscid flows, for

which the shallow-water model (section 7.3) is adequate. With all the preceding restrictions,

the horizontal momentum equations (7.12a) and (7.12b) reduce to

∂u

∂t
− fv = − g

∂η

∂x
(9.4a)

∂v

∂t
+ fu = − g

∂η

∂y
, (9.4b)

where f is the Coriolis parameter, g the gravitational acceleration, u and v are the veloc-
ity components in the x– and y–directions, respectively, and η is the surface displacement
(equal to η = h − H , the total fluid depth h minus the mean fluid thickness H). The inde-
pendent variables are x, y and t; the vertical coordinate is absent, for the flow is vertically
homogeneous (Section 7.3).

In terms of surface height, η, the continuity equation (7.17) can be expanded in several
groups of terms:

∂η

∂t
+

(

u
∂η

∂x
+ v

∂η

∂y

)

+ H

(

∂u

∂x
+

∂v

∂y

)

+ η

(

∂u

∂x
+

∂v

∂y

)

= 0

if the mean depth H is constant (flat bottom). Introducing the scale ∆H for the vertical

displacement η of the surface, we note that the four groups of terms in the preceding equation
are, sequentially, on the order of

∆H

T
, U

∆H

L
, H

U

L
, ∆H

U

L
.

According to (9.3), L/T is much larger than U , and the second and fourth groups of terms
may be neglected compared with the first term, leaving us with the linearized equation

∂η

∂t
+ H

(

∂u

∂x
+

∂v

∂y

)

= 0, (9.5)

recall
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where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-

face and particles on the bottom cannot penetrate through the bottom, the vertical velocities

at these levels are given by (4.28) and (4.31)

w(z = b + h) =
∂

∂t
(b + h) + u

∂

∂x
(b + h) + v

∂

∂y
(b + h) (7.15)

=
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y

w(z = b) = u
∂b

∂x
+ v

∂b

∂y
. (7.16)

Equation (7.14) then becomes, using the surface elevation η = b + h − H :

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (7.17)

which supersedes (7.5) and eliminates the vertical velocity from the formalism.

Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.
In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric

pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.18)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.13) and (7.17) form a 3-by-3 system for the variables u, v and η. The
vertical variable no longer appears, and the independent variables are x, y and t. This system
is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − g

∂η

∂x
(7.19a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − g

∂η

∂y
(7.19b)

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (7.19c)

Linear Equations and waves solutions for homogeneous !ows

Chapter 9

Barotropic Waves

(November 30, 2007) SUMMARY: The aim of this chapter is to describe an assortment of

waves that can be supported by an inviscid, homogeneous fluid in rotation and to analyze

numerical grid arrangements that facilitate the simulation of wave propagation, in particular

for the prediction of tides and storm surges.

9.1 Linear wave dynamics

Chiefly because linear equations are most amenable to methods of solution, it is wise to gain

insight into geophysical fluid dynamics by elucidating the possible linear processes and inves-

tigating their properties before exploring more intricate, nonlinear dynamics. The governing

equations of the previous section are essentially nonlinear; consequently, their linearization

can proceed only by imposing restrictions on the flows under consideration.

The Coriolis acceleration terms present in the momentum equations [(4.21a) and (4.21b)]

are, by nature, linear and need not be subjected to any approximation. This situation is

extremely fortunate because these are the central terms of geophysical fluid dynamics. In

contrast, the so-called advective terms (or convective terms) are quadratic and undesirable at

this moment. Hence, our considerations will be restricted to low-Rossby-number situations:

Ro =
U

ΩL
! 1. (9.1)

This is usually accomplished by restricting the attention to relatively weak flows (small U ),
large scales (large L), or, in the laboratory, fast rotation (large Ω). The terms expressing the
local time rate of change of the velocity (∂u/∂t and ∂v/∂t) are linear and are retained here
in order to permit the investigation of unsteady flows. Thus, the temporal Rossby number is

taken as

RoT =
1

ΩT
∼ 1. (9.2)
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Contrasting conditions (9.1) and (9.2), we conclude that we are about to consider slow flow

fields that evolve relatively fast. Aren’t we asking for the impossible? Not at all, for rapidly

moving disturbances do not necessarily require large velocities. In other words, information

may travel faster than material particles, and when this is the case, the flow takes the aspect

of a wave field. A typical example is the spreading of concentric ripples on the surface of a

pond after the throwing of a stone; energy radiates but there is no appreciable water movement

across the pond. In keeping with the foregoing quantities, a scale for the wave speed can be

defined as the velocity of a signal covering the distance L of the flow during the nominal

evolution time T , and, by virtue of restrictions (9.1) and (9.2), it can be compared to the flow
velocity:

C =
L

T
∼ ΩL " U. (9.3)

Thus, our present objective is to consider wave phenomena.

To shed the best possible light on the mechanisms of the basic wave processes typical in

geophysical flows, we further restrict our attention to homogeneous and inviscid flows, for

which the shallow-water model (section 7.3) is adequate. With all the preceding restrictions,

the horizontal momentum equations (7.12a) and (7.12b) reduce to

∂u

∂t
− fv = − g

∂η

∂x
(9.4a)

∂v

∂t
+ fu = − g

∂η

∂y
, (9.4b)

where f is the Coriolis parameter, g the gravitational acceleration, u and v are the veloc-
ity components in the x– and y–directions, respectively, and η is the surface displacement
(equal to η = h − H , the total fluid depth h minus the mean fluid thickness H). The inde-
pendent variables are x, y and t; the vertical coordinate is absent, for the flow is vertically
homogeneous (Section 7.3).

In terms of surface height, η, the continuity equation (7.17) can be expanded in several
groups of terms:

∂η

∂t
+

(

u
∂η

∂x
+ v

∂η

∂y

)

+ H

(

∂u

∂x
+

∂v

∂y

)

+ η

(

∂u

∂x
+

∂v

∂y

)

= 0

if the mean depth H is constant (flat bottom). Introducing the scale ∆H for the vertical

displacement η of the surface, we note that the four groups of terms in the preceding equation
are, sequentially, on the order of

∆H

T
, U

∆H

L
, H

U

L
, ∆H

U

L
.

According to (9.3), L/T is much larger than U , and the second and fourth groups of terms
may be neglected compared with the first term, leaving us with the linearized equation

∂η

∂t
+ H

(

∂u

∂x
+

∂v

∂y

)

= 0, (9.5)small amplitude waves
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the balance of which requires∆H /T to be on the order of UH/L or, again by virtue of (9.3),

∆H ! H. (9.6)

We are thus restricted to waves of small amplitudes.

The system of equations (9.4a) through (9.5) governs the linear wave dynamics of invis-

cid, homogeneous fluids under rotation. For the sake of simple notation, we will perform the

mathematical derivations only for positive values of the Coriolis parameter f and then state
the conclusions for both positive and negative values of f . The derivations with negative
values of f are left as exercises. Before proceeding with the separate studies of geophysical
fluid waves, the student or reader not familiar with the concepts of phase speed, wavenumber

vector, dispersion relation, and group velocity is directed to Appendix B. A comprehensive

account of geophysical waves can be found in the book by LeBlond and Mysak (1978), with

additional considerations on nonlinearities in Pedlosky (2003).

9.2 The Kelvin wave

The Kelvin wave is a traveling disturbance that requires the support of a lateral boundary.

Therefore, it most often occurs in the ocean where it can travel along coastlines. For conve-

nience, we use oceanic terminology such as coast and offshore.

As a simple model, consider a layer of fluid bounded below by a horizontal bottom, above

by a free surface, and on one side (say, the y–axis) by a vertical wall (Figure 9-1). Along this
wall (x = 0, the coast), the normal velocity must vanish (u = 0), but the absence of viscosity
allows a non-zero tangential velocity.

As he recounted in his presentation to the Royal Society of Edinburgh in 1879, Sir

William Thomson (later to become Lord Kelvin) thought that the vanishing of the veloc-

ity component normal to the wall suggested the possibility that it be zero everywhere. So, let

us state, in anticipation,

u = 0 (9.7)

throughout the domain and investigate the consequences. Although Equation (9.4a) contains

a remaining derivative with respect to x, Equations (9.4b) and (9.5) contain only derivatives
with respect to y and time. Elimination of the surface elevation leads to a single equation for
the alongshore velocity:

∂2v

∂t2
= c2 ∂2v

∂y2
, (9.8)

where

c =
√

gH (9.9)

is identified as the speed of surface gravity waves in nonrotating shallow waters.

The preceding equation governs the propagation of one-dimensional nondispersive waves

and possesses the general solution

1 2
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.
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Contrasting conditions (9.1) and (9.2), we conclude that we are about to consider slow flow

fields that evolve relatively fast. Aren’t we asking for the impossible? Not at all, for rapidly

moving disturbances do not necessarily require large velocities. In other words, information

may travel faster than material particles, and when this is the case, the flow takes the aspect

of a wave field. A typical example is the spreading of concentric ripples on the surface of a

pond after the throwing of a stone; energy radiates but there is no appreciable water movement

across the pond. In keeping with the foregoing quantities, a scale for the wave speed can be

defined as the velocity of a signal covering the distance L of the flow during the nominal

evolution time T , and, by virtue of restrictions (9.1) and (9.2), it can be compared to the flow
velocity:

C =
L

T
∼ ΩL " U. (9.3)

Thus, our present objective is to consider wave phenomena.

To shed the best possible light on the mechanisms of the basic wave processes typical in

geophysical flows, we further restrict our attention to homogeneous and inviscid flows, for

which the shallow-water model (section 7.3) is adequate. With all the preceding restrictions,

the horizontal momentum equations (7.12a) and (7.12b) reduce to

∂u

∂t
− fv = − g

∂η

∂x
(9.4a)

∂v

∂t
+ fu = − g

∂η

∂y
, (9.4b)

where f is the Coriolis parameter, g the gravitational acceleration, u and v are the veloc-
ity components in the x– and y–directions, respectively, and η is the surface displacement
(equal to η = h − H , the total fluid depth h minus the mean fluid thickness H). The inde-
pendent variables are x, y and t; the vertical coordinate is absent, for the flow is vertically
homogeneous (Section 7.3).

In terms of surface height, η, the continuity equation (7.17) can be expanded in several
groups of terms:

∂η

∂t
+

(

u
∂η

∂x
+ v

∂η

∂y

)

+ H

(

∂u

∂x
+

∂v

∂y

)

+ η

(

∂u

∂x
+

∂v

∂y

)

= 0

if the mean depth H is constant (flat bottom). Introducing the scale ∆H for the vertical

displacement η of the surface, we note that the four groups of terms in the preceding equation
are, sequentially, on the order of

∆H

T
, U

∆H

L
, H

U

L
, ∆H

U

L
.

According to (9.3), L/T is much larger than U , and the second and fourth groups of terms
may be neglected compared with the first term, leaving us with the linearized equation

∂η

∂t
+ H

(

∂u

∂x
+

∂v

∂y

)

= 0, (9.5)
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Governing Equations:
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the balance of which requires∆H /T to be on the order of UH/L or, again by virtue of (9.3),

∆H ! H. (9.6)

We are thus restricted to waves of small amplitudes.

The system of equations (9.4a) through (9.5) governs the linear wave dynamics of invis-

cid, homogeneous fluids under rotation. For the sake of simple notation, we will perform the

mathematical derivations only for positive values of the Coriolis parameter f and then state
the conclusions for both positive and negative values of f . The derivations with negative
values of f are left as exercises. Before proceeding with the separate studies of geophysical
fluid waves, the student or reader not familiar with the concepts of phase speed, wavenumber

vector, dispersion relation, and group velocity is directed to Appendix B. A comprehensive

account of geophysical waves can be found in the book by LeBlond and Mysak (1978), with

additional considerations on nonlinearities in Pedlosky (2003).

9.2 The Kelvin wave

The Kelvin wave is a traveling disturbance that requires the support of a lateral boundary.

Therefore, it most often occurs in the ocean where it can travel along coastlines. For conve-

nience, we use oceanic terminology such as coast and offshore.

As a simple model, consider a layer of fluid bounded below by a horizontal bottom, above

by a free surface, and on one side (say, the y–axis) by a vertical wall (Figure 9-1). Along this
wall (x = 0, the coast), the normal velocity must vanish (u = 0), but the absence of viscosity
allows a non-zero tangential velocity.

As he recounted in his presentation to the Royal Society of Edinburgh in 1879, Sir

William Thomson (later to become Lord Kelvin) thought that the vanishing of the veloc-

ity component normal to the wall suggested the possibility that it be zero everywhere. So, let

us state, in anticipation,

u = 0 (9.7)

throughout the domain and investigate the consequences. Although Equation (9.4a) contains

a remaining derivative with respect to x, Equations (9.4b) and (9.5) contain only derivatives
with respect to y and time. Elimination of the surface elevation leads to a single equation for
the alongshore velocity:

∂2v

∂t2
= c2 ∂2v

∂y2
, (9.8)

where

c =
√

gH (9.9)

is identified as the speed of surface gravity waves in nonrotating shallow waters.

The preceding equation governs the propagation of one-dimensional nondispersive waves

and possesses the general solution

Boundary Conditions:

vanish

{
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.

General Solution:

phase speed of wave does not depend 
on wave number = non dispersive
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moving disturbances do not necessarily require large velocities. In other words, information

may travel faster than material particles, and when this is the case, the flow takes the aspect

of a wave field. A typical example is the spreading of concentric ripples on the surface of a

pond after the throwing of a stone; energy radiates but there is no appreciable water movement

across the pond. In keeping with the foregoing quantities, a scale for the wave speed can be

defined as the velocity of a signal covering the distance L of the flow during the nominal

evolution time T , and, by virtue of restrictions (9.1) and (9.2), it can be compared to the flow
velocity:

C =
L

T
∼ ΩL " U. (9.3)

Thus, our present objective is to consider wave phenomena.

To shed the best possible light on the mechanisms of the basic wave processes typical in

geophysical flows, we further restrict our attention to homogeneous and inviscid flows, for

which the shallow-water model (section 7.3) is adequate. With all the preceding restrictions,

the horizontal momentum equations (7.12a) and (7.12b) reduce to

∂u

∂t
− fv = − g

∂η

∂x
(9.4a)

∂v

∂t
+ fu = − g

∂η

∂y
, (9.4b)

where f is the Coriolis parameter, g the gravitational acceleration, u and v are the veloc-
ity components in the x– and y–directions, respectively, and η is the surface displacement
(equal to η = h − H , the total fluid depth h minus the mean fluid thickness H). The inde-
pendent variables are x, y and t; the vertical coordinate is absent, for the flow is vertically
homogeneous (Section 7.3).

In terms of surface height, η, the continuity equation (7.17) can be expanded in several
groups of terms:

∂η

∂t
+

(

u
∂η

∂x
+ v

∂η

∂y

)

+ H

(

∂u

∂x
+

∂v

∂y

)

+ η

(

∂u

∂x
+

∂v

∂y

)

= 0

if the mean depth H is constant (flat bottom). Introducing the scale ∆H for the vertical

displacement η of the surface, we note that the four groups of terms in the preceding equation
are, sequentially, on the order of

∆H

T
, U

∆H

L
, H

U

L
, ∆H

U

L
.

According to (9.3), L/T is much larger than U , and the second and fourth groups of terms
may be neglected compared with the first term, leaving us with the linearized equation

∂η

∂t
+ H

(

∂u

∂x
+

∂v

∂y

)

= 0, (9.5)
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Governing Equations:
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.

General Solution:
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with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).
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with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −
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H
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(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,
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covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.
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with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −
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V1(x, y + ct) +
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(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
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combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.
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with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
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Contrasting conditions (9.1) and (9.2), we conclude that we are about to consider slow flow

fields that evolve relatively fast. Aren’t we asking for the impossible? Not at all, for rapidly

moving disturbances do not necessarily require large velocities. In other words, information

may travel faster than material particles, and when this is the case, the flow takes the aspect

of a wave field. A typical example is the spreading of concentric ripples on the surface of a

pond after the throwing of a stone; energy radiates but there is no appreciable water movement

across the pond. In keeping with the foregoing quantities, a scale for the wave speed can be

defined as the velocity of a signal covering the distance L of the flow during the nominal

evolution time T , and, by virtue of restrictions (9.1) and (9.2), it can be compared to the flow
velocity:

C =
L

T
∼ ΩL " U. (9.3)

Thus, our present objective is to consider wave phenomena.

To shed the best possible light on the mechanisms of the basic wave processes typical in

geophysical flows, we further restrict our attention to homogeneous and inviscid flows, for

which the shallow-water model (section 7.3) is adequate. With all the preceding restrictions,

the horizontal momentum equations (7.12a) and (7.12b) reduce to

∂u

∂t
− fv = − g

∂η

∂x
(9.4a)

∂v

∂t
+ fu = − g

∂η

∂y
, (9.4b)

where f is the Coriolis parameter, g the gravitational acceleration, u and v are the veloc-
ity components in the x– and y–directions, respectively, and η is the surface displacement
(equal to η = h − H , the total fluid depth h minus the mean fluid thickness H). The inde-
pendent variables are x, y and t; the vertical coordinate is absent, for the flow is vertically
homogeneous (Section 7.3).

In terms of surface height, η, the continuity equation (7.17) can be expanded in several
groups of terms:

∂η

∂t
+

(

u
∂η

∂x
+ v

∂η

∂y

)

+ H

(

∂u

∂x
+

∂v

∂y

)

+ η

(

∂u

∂x
+

∂v

∂y

)

= 0

if the mean depth H is constant (flat bottom). Introducing the scale ∆H for the vertical

displacement η of the surface, we note that the four groups of terms in the preceding equation
are, sequentially, on the order of

∆H

T
, U

∆H

L
, H

U

L
, ∆H

U

L
.

According to (9.3), L/T is much larger than U , and the second and fourth groups of terms
may be neglected compared with the first term, leaving us with the linearized equation

∂η

∂t
+ H

(

∂u

∂x
+

∂v

∂y

)

= 0, (9.5)
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Governing Equations:
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.

General Solution:
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).
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(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −

√
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g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.
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with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).
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covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).
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η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).
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which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
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η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance
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Kelvin Waves
waves moving along a side boundary with Ro << 1

General Solution:
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:
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combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.

Rossby Deformation Radius
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Figure 9-2 Cotidal lines (dashed) with time in lunar hours for the M2 tide in the English Channel

showing the eastward progression of the tide from the North Atlantic Ocean. Lines of equal tidal range

(solid, with value in meters) reveal larger amplitudes along the French coast, namely to the right of the

wave progression in accordance with Kelvin waves. (From Proudman, 1953, as adapted by Gill, 1982.)

Of the two independent solutions, the second increases exponentially with distance from

shore and is physically unfit. This leaves the other as the most general solution:

u = 0 (9.13a)

v =
√

gH F (y + ct) e−x/R (9.13b)

η = − H F (y + ct) e−x/R, (9.13c)

where F is an arbitrary function of its variable.

Because of the exponential decay away from the boundary, the Kelvin wave is said to be

trapped. Without the boundary, it is unbounded at large distances and thus cannot exist; the

length R is a measure of the trapping distance. In the longshore direction, the wave travels

without distortion at the speed of surface gravity waves. In the Northern Hemisphere (f > 0,
as in the preceding analysis), the wave travels with the coast on its right; in the Southern

Hemisphere, with the coast on its left. Note that, although the direction of wave propagation

is unique, the sign of the longshore velocity is arbitrary: An upwelling wave (i.e., a surface

bulge with η > 0) has a current flowing in the direction of the wave, whereas a downwelling
wave (i.e., a surface trough with η < 0) is accompanied by a current flowing in the direction
opposite to that of the wave (Figure 9-1).

In the limit of no rotation (f → 0), the trapping distance increases without bound and the
wave reduces to a simple gravity wave with crests and troughs oriented perpendicularly to

the coast.

Surface Kelvin waves (as described previously, and to be distinguished from internal

Kelvin waves, which require a stratification, see the end of Chapter 13) are generated by the

ocean tides and by local wind effects in coastal areas. For example, a storm off the northeast

coast of Great Britain can send a Kelvin wave that follows the shores of the North Sea in a

counterclockwise direction and eventually reaches the west coast of Norway. Traveling in

approximately 40 m of water and over a distance of 2200 km, it accomplishes its journey in
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.

Rossby Deformation Radius
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Distance that a particle or wave moving at a 
certain speed needs to cover in order to be affected 
by the rotation of the planet.

Definition:

BAROTROPIC

250 CHAPTER 9. BAROTROPIC WAVES

W
av

e 
pr

op
ag

at
io

n 

Divergence 

Convergence 

x

y

η W
av

e 
pr

op
ag

at
io

n 

Geostrophic current 

Divergence 

Convergence 

x

y

η

Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.

If d is the total depth of the water, we call this the 
BAROTROPIC DEFORMATION RADIUS or 
EXTERNAL RADIUS



Rossby radius 
of deformation internal

Distance that a particle or wave moving at a 
certain speed needs to cover in order to be affected 
by the rotation of the planet.

Definition:

If d is the depth of the upper ocean layer, we call 
this the BAROCLINIC DEFORMATION RADIUS or 
INTERNAL RADIUS
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.
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Contrasting conditions (9.1) and (9.2), we conclude that we are about to consider slow flow

fields that evolve relatively fast. Aren’t we asking for the impossible? Not at all, for rapidly

moving disturbances do not necessarily require large velocities. In other words, information

may travel faster than material particles, and when this is the case, the flow takes the aspect

of a wave field. A typical example is the spreading of concentric ripples on the surface of a

pond after the throwing of a stone; energy radiates but there is no appreciable water movement

across the pond. In keeping with the foregoing quantities, a scale for the wave speed can be

defined as the velocity of a signal covering the distance L of the flow during the nominal

evolution time T , and, by virtue of restrictions (9.1) and (9.2), it can be compared to the flow
velocity:

C =
L

T
∼ ΩL " U. (9.3)

Thus, our present objective is to consider wave phenomena.

To shed the best possible light on the mechanisms of the basic wave processes typical in

geophysical flows, we further restrict our attention to homogeneous and inviscid flows, for

which the shallow-water model (section 7.3) is adequate. With all the preceding restrictions,

the horizontal momentum equations (7.12a) and (7.12b) reduce to

∂u

∂t
− fv = − g

∂η

∂x
(9.4a)

∂v

∂t
+ fu = − g

∂η

∂y
, (9.4b)

where f is the Coriolis parameter, g the gravitational acceleration, u and v are the veloc-
ity components in the x– and y–directions, respectively, and η is the surface displacement
(equal to η = h − H , the total fluid depth h minus the mean fluid thickness H). The inde-
pendent variables are x, y and t; the vertical coordinate is absent, for the flow is vertically
homogeneous (Section 7.3).

In terms of surface height, η, the continuity equation (7.17) can be expanded in several
groups of terms:

∂η

∂t
+

(

u
∂η

∂x
+ v

∂η

∂y

)

+ H

(

∂u

∂x
+

∂v

∂y

)

+ η

(

∂u

∂x
+

∂v

∂y

)

= 0

if the mean depth H is constant (flat bottom). Introducing the scale ∆H for the vertical

displacement η of the surface, we note that the four groups of terms in the preceding equation
are, sequentially, on the order of

∆H

T
, U

∆H

L
, H

U

L
, ∆H

U

L
.

According to (9.3), L/T is much larger than U , and the second and fourth groups of terms
may be neglected compared with the first term, leaving us with the linearized equation

∂η

∂t
+ H

(

∂u

∂x
+

∂v

∂y

)

= 0, (9.5)
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homogeneous (Section 7.3).

In terms of surface height, η, the continuity equation (7.17) can be expanded in several
groups of terms:
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if the mean depth H is constant (flat bottom). Introducing the scale ∆H for the vertical

displacement η of the surface, we note that the four groups of terms in the preceding equation
are, sequentially, on the order of
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U

L
.

According to (9.3), L/T is much larger than U , and the second and fourth groups of terms
may be neglected compared with the first term, leaving us with the linearized equation

∂η

∂t
+ H
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∂u

∂x
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∂v

∂y

)

= 0, (9.5)

Governing Equations:
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about 31 h.

The decay of the Kelvin-wave amplitude away from the coast is clearly manifested in the

English Channel. The North Atlantic tide enters the Channel from the west and travels east-

ward toward the North Sea (Figure 9-2). Being essentially a surface wave in a rotating fluid

bounded by a coast, the tide assumes the character of a Kelvin wave and propagates while

leaning against a coast on its right, namely, France. This explains why tides are noticeably

higher along the French coast than along the British coast a few tens of kilometers across

(Figure 9-2).

9.3 Inertia-gravity waves (Poincaré waves)

Let us now do away with the lateral boundary and relax the stipulation u = 0. The system of
equations (9.4a) through (9.5) is kept in its entirety. With f constant and in the presence of a
flat bottom, all coefficients are constant, and a Fourier-mode solution can be sought. With u,
v, and η taken as constant factors times a periodic function
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 ei (kxx+kyy−ωt) (9.14)

where the symbol! indicates the real part of what follows, kx and ky are the wavenumbers in

the x– and y–directions, respectively, and ω is a frequency, the system of equations becomes
algebraic:

− i ωU − fV = − i gkxA (9.15a)

− i ωV + fU = − i gkyA (9.15b)

− i ωA + H (i kxU + i kyV ) = 0. (9.15c)

This system admits the trivial solution u = v = η = 0 unless its determinant vanishes. Thus
waves occur only when the following condition is met:

ω [ω2 − f2 − gH (k2
x + k2

y)] = 0. (9.16)

This condition, called the dispersion relation, provides the wave frequency in terms of the

wavenumber magnitude k = (k2
x + k2

y)1/2 and the constants of the problem. The first root,

ω = 0, corresponds to a steady geostrophic state. Returning to (9.4a) through (9.5) with
the time derivatives set to zero, we recognize the equations governing the geostrophic flow

described in Section 7.1. In other words, geostrophic flows can be interpreted as arrested

waves of any wavelength. If the bottom were not flat, these “waves” would cease to exist and

be replaced by Taylor columns.

The remaining two roots,

ω =
√

f2 + gH k2 (9.17)

Assume solutions in the form:

Wave numbers
Frequency
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The determinant of this linear system vanishes if:

dispersion relationship
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Inertia-gravity waves (Poincare’ waves)
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Contrasting conditions (9.1) and (9.2), we conclude that we are about to consider slow flow

fields that evolve relatively fast. Aren’t we asking for the impossible? Not at all, for rapidly

moving disturbances do not necessarily require large velocities. In other words, information

may travel faster than material particles, and when this is the case, the flow takes the aspect

of a wave field. A typical example is the spreading of concentric ripples on the surface of a

pond after the throwing of a stone; energy radiates but there is no appreciable water movement

across the pond. In keeping with the foregoing quantities, a scale for the wave speed can be

defined as the velocity of a signal covering the distance L of the flow during the nominal

evolution time T , and, by virtue of restrictions (9.1) and (9.2), it can be compared to the flow
velocity:

C =
L

T
∼ ΩL " U. (9.3)

Thus, our present objective is to consider wave phenomena.

To shed the best possible light on the mechanisms of the basic wave processes typical in

geophysical flows, we further restrict our attention to homogeneous and inviscid flows, for

which the shallow-water model (section 7.3) is adequate. With all the preceding restrictions,

the horizontal momentum equations (7.12a) and (7.12b) reduce to

∂u

∂t
− fv = − g

∂η

∂x
(9.4a)

∂v

∂t
+ fu = − g

∂η

∂y
, (9.4b)

where f is the Coriolis parameter, g the gravitational acceleration, u and v are the veloc-
ity components in the x– and y–directions, respectively, and η is the surface displacement
(equal to η = h − H , the total fluid depth h minus the mean fluid thickness H). The inde-
pendent variables are x, y and t; the vertical coordinate is absent, for the flow is vertically
homogeneous (Section 7.3).

In terms of surface height, η, the continuity equation (7.17) can be expanded in several
groups of terms:

∂η

∂t
+

(

u
∂η

∂x
+ v

∂η

∂y

)

+ H

(

∂u

∂x
+

∂v

∂y

)

+ η

(

∂u

∂x
+

∂v

∂y

)

= 0

if the mean depth H is constant (flat bottom). Introducing the scale ∆H for the vertical

displacement η of the surface, we note that the four groups of terms in the preceding equation
are, sequentially, on the order of

∆H

T
, U

∆H

L
, H

U

L
, ∆H

U

L
.

According to (9.3), L/T is much larger than U , and the second and fourth groups of terms
may be neglected compared with the first term, leaving us with the linearized equation

∂η

∂t
+ H

(

∂u

∂x
+

∂v

∂y

)

= 0, (9.5)
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Governing Equations: Assume solutions in the form:

Wave numbers
Frequency

Substitution of solution into equations leads to:
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about 31 h.

The decay of the Kelvin-wave amplitude away from the coast is clearly manifested in the

English Channel. The North Atlantic tide enters the Channel from the west and travels east-

ward toward the North Sea (Figure 9-2). Being essentially a surface wave in a rotating fluid

bounded by a coast, the tide assumes the character of a Kelvin wave and propagates while

leaning against a coast on its right, namely, France. This explains why tides are noticeably

higher along the French coast than along the British coast a few tens of kilometers across

(Figure 9-2).

9.3 Inertia-gravity waves (Poincaré waves)

Let us now do away with the lateral boundary and relax the stipulation u = 0. The system of
equations (9.4a) through (9.5) is kept in its entirety. With f constant and in the presence of a
flat bottom, all coefficients are constant, and a Fourier-mode solution can be sought. With u,
v, and η taken as constant factors times a periodic function
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 ei (kxx+kyy−ωt) (9.14)

where the symbol! indicates the real part of what follows, kx and ky are the wavenumbers in

the x– and y–directions, respectively, and ω is a frequency, the system of equations becomes
algebraic:

− i ωU − fV = − i gkxA (9.15a)

− i ωV + fU = − i gkyA (9.15b)

− i ωA + H (i kxU + i kyV ) = 0. (9.15c)

This system admits the trivial solution u = v = η = 0 unless its determinant vanishes. Thus
waves occur only when the following condition is met:

ω [ω2 − f2 − gH (k2
x + k2

y)] = 0. (9.16)

This condition, called the dispersion relation, provides the wave frequency in terms of the

wavenumber magnitude k = (k2
x + k2

y)1/2 and the constants of the problem. The first root,

ω = 0, corresponds to a steady geostrophic state. Returning to (9.4a) through (9.5) with
the time derivatives set to zero, we recognize the equations governing the geostrophic flow

described in Section 7.1. In other words, geostrophic flows can be interpreted as arrested

waves of any wavelength. If the bottom were not flat, these “waves” would cease to exist and

be replaced by Taylor columns.

The remaining two roots,

ω =
√

f2 + gH k2 (9.17)
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dispersion relationship

with:
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Figure 9-3 Recapitulation of the dis-

persion relation of Kelvin and Poincaré
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bottom. While Poincaré waves (gray
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(diagonal line) propagates only along a

boundary.

and its opposite, correspond to bona fide traveling waves, called Poincaré waves, whose

frequency is always superinertial. In the limit of no rotation (f = 0), the frequency is ω =
k
√

gH and the phase speed is c = ω/k =
√

gH. The waves become classical shallow-
water gravity waves. The same limit also occurs at large wavenumbers [k2 " f2/gH , i.e.,
wavelengths much shorter than the deformation radius defined in (9.12)]. This is not too

surprising, since such waves are too short and too fast to feel the rotation of the earth.

At the opposite extreme of low wavenumbers (k2 # f2/gH , i.e., wavelengths much
longer than the deformation radius), the rotation effect dominates, yielding ω $ f . At this
limit, the flow pattern is virtually laterally uniform, and all fluid particles move in unison,

each describing a circular inertial oscillation, as described in Section 2.3. For intermediate

wavenumbers, the frequency (Figure 9-3) is always greater than f , and the waves are said to
be superinertial. Since Poincaré waves exhibit a mixed behavior between Gravity waves and

inertial oscillations, they are often called inertia-gravity waves.

Because the phase speed c = ω/k depends on the wavenumber, wave components of
different wavelengths travel at different speeds, and the wave is said to be dispersive. This is

in contrast with the nondispersive Kelvin wave, the signal of which travels without distortion,

irrespective of its profile. See Appendix B for additional information on these notions.

Seiches, tides and tsunamis are examples of barotropic gravity waves. A seiche is a stand-

ing wave, formed by the superposition of two waves of equal wavelength and propagating in

opposite directions due to reflection on lateral boundaries. Seiches occur in confined water

bodies, such as lakes, gulfs and semi-enclosed seas.

A tsunami is a wave triggered by an underwater earthquake. With wavelengths ranging

from tens to hundreds of kilometers, tsunamis are Barotropic waves, but their relatively high

frequency (period of a few minutes) makes them only slightly affected by the Coriolis force.

What makes tsunamis disastrous is the gradual amplification of their amplitude as they enter

shallower waters, so that what may begin as an innocuous 1m wave in the middle of the

ocean, which a ship hardly notices, can turn into a catastrophic multi-meter surge on the
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about 31 h.

The decay of the Kelvin-wave amplitude away from the coast is clearly manifested in the

English Channel. The North Atlantic tide enters the Channel from the west and travels east-

ward toward the North Sea (Figure 9-2). Being essentially a surface wave in a rotating fluid

bounded by a coast, the tide assumes the character of a Kelvin wave and propagates while

leaning against a coast on its right, namely, France. This explains why tides are noticeably

higher along the French coast than along the British coast a few tens of kilometers across

(Figure 9-2).

9.3 Inertia-gravity waves (Poincaré waves)

Let us now do away with the lateral boundary and relax the stipulation u = 0. The system of
equations (9.4a) through (9.5) is kept in its entirety. With f constant and in the presence of a
flat bottom, all coefficients are constant, and a Fourier-mode solution can be sought. With u,
v, and η taken as constant factors times a periodic function
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 ei (kxx+kyy−ωt) (9.14)

where the symbol! indicates the real part of what follows, kx and ky are the wavenumbers in

the x– and y–directions, respectively, and ω is a frequency, the system of equations becomes
algebraic:

− i ωU − fV = − i gkxA (9.15a)

− i ωV + fU = − i gkyA (9.15b)

− i ωA + H (i kxU + i kyV ) = 0. (9.15c)

This system admits the trivial solution u = v = η = 0 unless its determinant vanishes. Thus
waves occur only when the following condition is met:

ω [ω2 − f2 − gH (k2
x + k2

y)] = 0. (9.16)

This condition, called the dispersion relation, provides the wave frequency in terms of the

wavenumber magnitude k = (k2
x + k2

y)1/2 and the constants of the problem. The first root,

ω = 0, corresponds to a steady geostrophic state. Returning to (9.4a) through (9.5) with
the time derivatives set to zero, we recognize the equations governing the geostrophic flow

described in Section 7.1. In other words, geostrophic flows can be interpreted as arrested

waves of any wavelength. If the bottom were not flat, these “waves” would cease to exist and

be replaced by Taylor columns.

The remaining two roots,

ω =
√

f2 + gH k2 (9.17)
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superinertial frequency
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.
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and its opposite, correspond to bona fide traveling waves, called Poincaré waves, whose

frequency is always superinertial. In the limit of no rotation (f = 0), the frequency is ω =
k
√

gH and the phase speed is c = ω/k =
√

gH. The waves become classical shallow-
water gravity waves. The same limit also occurs at large wavenumbers [k2 " f2/gH , i.e.,
wavelengths much shorter than the deformation radius defined in (9.12)]. This is not too

surprising, since such waves are too short and too fast to feel the rotation of the earth.

At the opposite extreme of low wavenumbers (k2 # f2/gH , i.e., wavelengths much
longer than the deformation radius), the rotation effect dominates, yielding ω $ f . At this
limit, the flow pattern is virtually laterally uniform, and all fluid particles move in unison,

each describing a circular inertial oscillation, as described in Section 2.3. For intermediate

wavenumbers, the frequency (Figure 9-3) is always greater than f , and the waves are said to
be superinertial. Since Poincaré waves exhibit a mixed behavior between Gravity waves and

inertial oscillations, they are often called inertia-gravity waves.

Because the phase speed c = ω/k depends on the wavenumber, wave components of
different wavelengths travel at different speeds, and the wave is said to be dispersive. This is

in contrast with the nondispersive Kelvin wave, the signal of which travels without distortion,

irrespective of its profile. See Appendix B for additional information on these notions.

Seiches, tides and tsunamis are examples of barotropic gravity waves. A seiche is a stand-

ing wave, formed by the superposition of two waves of equal wavelength and propagating in

opposite directions due to reflection on lateral boundaries. Seiches occur in confined water

bodies, such as lakes, gulfs and semi-enclosed seas.

A tsunami is a wave triggered by an underwater earthquake. With wavelengths ranging

from tens to hundreds of kilometers, tsunamis are Barotropic waves, but their relatively high

frequency (period of a few minutes) makes them only slightly affected by the Coriolis force.

What makes tsunamis disastrous is the gradual amplification of their amplitude as they enter

shallower waters, so that what may begin as an innocuous 1m wave in the middle of the

ocean, which a ship hardly notices, can turn into a catastrophic multi-meter surge on the
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about 31 h.

The decay of the Kelvin-wave amplitude away from the coast is clearly manifested in the

English Channel. The North Atlantic tide enters the Channel from the west and travels east-

ward toward the North Sea (Figure 9-2). Being essentially a surface wave in a rotating fluid

bounded by a coast, the tide assumes the character of a Kelvin wave and propagates while

leaning against a coast on its right, namely, France. This explains why tides are noticeably

higher along the French coast than along the British coast a few tens of kilometers across

(Figure 9-2).

9.3 Inertia-gravity waves (Poincaré waves)

Let us now do away with the lateral boundary and relax the stipulation u = 0. The system of
equations (9.4a) through (9.5) is kept in its entirety. With f constant and in the presence of a
flat bottom, all coefficients are constant, and a Fourier-mode solution can be sought. With u,
v, and η taken as constant factors times a periodic function
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where the symbol! indicates the real part of what follows, kx and ky are the wavenumbers in

the x– and y–directions, respectively, and ω is a frequency, the system of equations becomes
algebraic:

− i ωU − fV = − i gkxA (9.15a)

− i ωV + fU = − i gkyA (9.15b)

− i ωA + H (i kxU + i kyV ) = 0. (9.15c)

This system admits the trivial solution u = v = η = 0 unless its determinant vanishes. Thus
waves occur only when the following condition is met:

ω [ω2 − f2 − gH (k2
x + k2

y)] = 0. (9.16)

This condition, called the dispersion relation, provides the wave frequency in terms of the

wavenumber magnitude k = (k2
x + k2

y)1/2 and the constants of the problem. The first root,

ω = 0, corresponds to a steady geostrophic state. Returning to (9.4a) through (9.5) with
the time derivatives set to zero, we recognize the equations governing the geostrophic flow

described in Section 7.1. In other words, geostrophic flows can be interpreted as arrested

waves of any wavelength. If the bottom were not flat, these “waves” would cease to exist and

be replaced by Taylor columns.

The remaining two roots,

ω =
√

f2 + gH k2 (9.17)
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Figure 9-1 Upwelling and downwelling Kelvin waves. In the Northern Hemisphere, both waves travel

with the coast on their right, but the accompanying currents differ. Geostrophic equilibrium in the x–
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,

convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering

is such that the wave propagates towards negative y in either case (positive or negative bulge).

v = V1(x, y + ct) + V2(x, y − ct), (9.10)

which consists of two waves, one traveling toward decreasing y and the other in the opposite
direction. Returning to either (9.4b) or (9.5) where u is set to zero, we easily determine the
surface displacement:

η = −

√

H

g
V1(x, y + ct) +

√

H

g
V2(x, y − ct). (9.11)

(Any additive constant can be eliminated by a proper redefinition of the mean depthH .) The
structure of the functions V1 and V2 is then determined by the use of the remaining equation,

i.e., (9.4a):

∂V1

∂x
= −

f√
gH

V1,
∂V2

∂x
= +

f√
gH

V2

or

V1 = V10(y + ct) e−x/R , V2 = V20(y − ct) e+x/R,

where the length R, defined as

R =

√
gH

f
=

c

f
, (9.12)

combines all three constants of the problem. Within a numerical factor, it is the distance

covered by a wave, such as the present one, traveling at the speed c during one inertial period
(2π/f ). For reasons that will become apparent later, this quantity is called the Rossby radius
of deformation, or, more simply, the radius of deformation.

 

Ly >> R     →     ω  f

Ly << R     →     ω  gH k

1) inertial waves

 

Ly >> R     →     ω  f

Ly << R     →     ω  gH k
2) gravity waves
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Contrasting conditions (9.1) and (9.2), we conclude that we are about to consider slow flow

fields that evolve relatively fast. Aren’t we asking for the impossible? Not at all, for rapidly

moving disturbances do not necessarily require large velocities. In other words, information

may travel faster than material particles, and when this is the case, the flow takes the aspect

of a wave field. A typical example is the spreading of concentric ripples on the surface of a

pond after the throwing of a stone; energy radiates but there is no appreciable water movement

across the pond. In keeping with the foregoing quantities, a scale for the wave speed can be

defined as the velocity of a signal covering the distance L of the flow during the nominal

evolution time T , and, by virtue of restrictions (9.1) and (9.2), it can be compared to the flow
velocity:

C =
L

T
∼ ΩL " U. (9.3)

Thus, our present objective is to consider wave phenomena.

To shed the best possible light on the mechanisms of the basic wave processes typical in

geophysical flows, we further restrict our attention to homogeneous and inviscid flows, for

which the shallow-water model (section 7.3) is adequate. With all the preceding restrictions,

the horizontal momentum equations (7.12a) and (7.12b) reduce to

∂u

∂t
− fv = − g

∂η

∂x
(9.4a)

∂v

∂t
+ fu = − g

∂η

∂y
, (9.4b)

where f is the Coriolis parameter, g the gravitational acceleration, u and v are the veloc-
ity components in the x– and y–directions, respectively, and η is the surface displacement
(equal to η = h − H , the total fluid depth h minus the mean fluid thickness H). The inde-
pendent variables are x, y and t; the vertical coordinate is absent, for the flow is vertically
homogeneous (Section 7.3).

In terms of surface height, η, the continuity equation (7.17) can be expanded in several
groups of terms:

∂η

∂t
+

(

u
∂η

∂x
+ v

∂η

∂y

)

+ H

(

∂u

∂x
+

∂v

∂y

)

+ η

(

∂u

∂x
+

∂v

∂y

)

= 0

if the mean depth H is constant (flat bottom). Introducing the scale ∆H for the vertical

displacement η of the surface, we note that the four groups of terms in the preceding equation
are, sequentially, on the order of

∆H

T
, U

∆H

L
, H

U

L
, ∆H

U

L
.

According to (9.3), L/T is much larger than U , and the second and fourth groups of terms
may be neglected compared with the first term, leaving us with the linearized equation

∂η

∂t
+ H

(

∂u

∂x
+

∂v

∂y

)

= 0, (9.5)
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Governing Equations: Assume that geostrophic  steady state 
undergoes slow evolution in time
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beach. Disastrous tsunamis occurred in the Pacific Ocean on 22 May 1960 and in the Indian

Ocean on 26 December 2004. Tsunamis are relatively easy to forecast with computer models.

The key to an effective warning system is the early detection of the originating earthquake,

to track the rapid propagation (at speed of
√

gH) of the tsunami from point of origin to the
coastline on time to issue a warning before the high wave strikes.

Before concluding this section, a note is in order to warn about the possibility of violating

the hydrostatic assumption. Indeed, at short wavelengths (on the order of the fluid depth or

shorter), the frequency is high (period much shorter than 2π/f ), and the vertical acceleration
(equal to ∂2η/∂t2 at the surface) becomes comparable to the gravitational acceleration g.
When this is the case, the hydrostatic approximation breaks down, the assumption of vertical

rigidity may no longer be invoked, and the problem becomes three-dimensional. For a study

of non-hydrostatic gravity waves, the reader is referred to Section 10 of LeBlond and Mysak

(1978) and Lecture 3 of Pedlosky (2003).

9.4 Planetary waves (Rossby waves)

Kelvin and Poincaré waves are relatively fast waves, and we may wonder whether rotating,

homogeneous fluids could not support another breed of slower waves. Could it be, for ex-

ample, that the steady geostrophic flows, those corresponding to the zero frequency solution

found in the preceding section, may develop a slow evolution (frequency slightly above zero)

when the system is modified somewhat? The answer is yes, and one such class consists of

planetary waves, in which the time evolution originates in the weak but important planetary

effect.

As we may recall from Section 2.5, on a spherical earth (or planet or star, in general), the

Coriolis parameter, f , is proportional to the rotation rate, Ω, times the sine of the latitude, ϕ:

f = 2Ω sin ϕ.

Large wave formations such as alternating cyclones and anticyclones contributing to our daily

weather and, to a lesser extent, Gulf Stream meanders span several degrees of latitude; for

them, it is necessary to consider the meridional change in the Coriolis parameter. If the co-

ordinate y is directed northward and is measured from a reference latitude ϕ0 (say, a latitude

somewhere in the middle of the wave under consideration), then ϕ = ϕ0 + y/a, where a is
the earth’s radius (6371 km). Considering y/a as a small perturbation, the Coriolis parameter
can be expanded in a Taylor series:

f = 2Ω sin ϕ0 + 2Ω
y

a
cosϕ0 + ... (9.18)

Retaining only the first two terms, we write

f = f0 + β0y, (9.19)

where f0 = 2Ω sinϕ0 is the reference Coriolis parameter and β0 = 2(Ω/a) cosϕ0 is the

so-called beta parameter. Typical midlatitude values on Earth are f0 = 8 × 10−5 s−1 and

β0 = 2 × 10−11 m−1s−1. The Cartesian framework where the beta term is not retained is

This happens if we consider planetary 
effects 
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called the f -plane, and that where it is retained is called the beta plane. The next step in order
of accuracy is to retain the full spherical geometry (which we avoid throughout this book).

Rigorous justifications of the beta-plane approximation can be found in Veronis (1963, 1981),

Pedlosky (1987), and Verkley (1990).

Note that the beta-plane representation is validated at mid latitudes only if the β0y term
is small compared to the leading f0 term. For the motion’s meridional length scale L, this
implies

β =
β0L

f0
! 1, (9.20)

where the dimensionless ratio β can be called the planetary number.
The governing equations, having become

∂u

∂t
− (f0 + β0y)v = − g

∂η

∂x
(9.21a)

∂v

∂t
+ (f0 + β0y)u = − g

∂η

∂y
(9.21b)

∂η

∂t
+ H

(

∂u

∂x
+

∂v

∂y

)

= 0, (9.21c)

are now mixtures of small and large terms. The larger ones (f0, g, and H terms) comprise

the otherwise steady, f -plane geostrophic dynamics; the smaller ones (time derivatives and
β0 terms) come as perturbations, which, although small, will govern the wave evolution.

In first approximation, the large terms dominate, and thus u # −(g/f0)∂η/∂y and v #
+(g/f0)∂η/∂x. Use of this first approximation in the small terms of (9.21a) and (9.21b)
yields

−
g

f0

∂2η

∂y∂t
− f0v −

β0g

f0
y

∂η

∂x
= − g

∂η

∂x
(9.22)

+
g

f0

∂2η

∂x∂t
+ f0u −

β0g

f0
y

∂η

∂y
= − g

∂η

∂y
. (9.23)

These equations are trivial to solve with respect to u and v:

u = −
g

f0

∂η

∂y
−

g

f2
0

∂2η

∂x∂t
+

β0g

f2
0

y
∂η

∂y
(9.24)

v = +
g

f0

∂η

∂x
−

g

f2
0

∂2η

∂y∂t
−

β0g

f2
0

y
∂η

∂x
. (9.25)

These last expressions can be interpreted as consisting of the leading and first-correction

terms in a regular perturbation series of the velocity field. We identify the first term of each

expansion as the geostrophic velocity. By contrast, the next and smaller terms are called

ageostrophic.

Substitution in continuity equation (9.21c) leads to a single equation for the surface dis-

placement:

Planetary waves (Rossby waves)

Governing Equations for planetary waves:
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These last expressions can be interpreted as consisting of the leading and first-correction

terms in a regular perturbation series of the velocity field. We identify the first term of each

expansion as the geostrophic velocity. By contrast, the next and smaller terms are called

ageostrophic.

Substitution in continuity equation (9.21c) leads to a single equation for the surface dis-

placement:

Geostrophic balance dominates
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These last expressions can be interpreted as consisting of the leading and first-correction

terms in a regular perturbation series of the velocity field. We identify the first term of each

expansion as the geostrophic velocity. By contrast, the next and smaller terms are called

ageostrophic.

Substitution in continuity equation (9.21c) leads to a single equation for the surface dis-

placement:
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∂η

∂t
− R2 ∂

∂t
∇2η − β0R

2 ∂η

∂x
= 0, (9.26)

where ∇2 is the two-dimensional Laplace operator and R =
√

gH/f0 is the deformation

radius, defined in (9.12) but now suitably amended to be a constant. Unlike the original set

of equations, this last equation has constant coefficients and a solution of the Fourier type,

cos(kxx + kyy − ωt), can be sought. The dispersion relation follows:

ω = − β0R
2 kx

1 + R2 (k2
x + k2

y)
, (9.27)

providing the frequency ω as a function of the wavenumber components kx and ky . The

waves are called planetary waves or Rossby waves, in honor of Carl-Gustaf Rossby, who

first proposed this wave theory to explain the systematic movement of midlatitude weather

patterns. We note immediately that if the beta corrections had not been retained (β0 = 0), the
frequency would have been nil. This is the ω = 0 solution of Section 9.3, which corresponds
to a steady geostrophic flow on the f -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,, having in

effect assumed a very small temporal Rossby number,RoT $ 1), we have retained only the
low frequency, the one much less than f0. In the parlance of wave dynamics, this is called

filtering.

That the frequency given by (9.27) is indeed small can be verified easily. With L (∼
1/kx ∼ 1/ky) as a measure of the wavelength, two cases can arise: either L <

∼ R or L >
∼ R;

the frequency scale is then given, respectively by

Shorter waves : L ! R, ω ∼ β0L (9.28)

Longer waves : L " R, ω ∼
β0R2

L
! β0L. (9.29)

In either case, our premise (9.20) that β0L is much less than f0 implies that ω is much smaller
than f0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the zonal

phase speed

cx =
ω

kx
=

−β0R2

1 + R2 (k2
x + k2

y)
(9.30)

is always negative, implying a phase propagation to the west (Figure 9-4). The sign of

the meridional phase speed cy = ω/ky is undetermined, since the wavenumber ky may

have either sign. Thus, planetary waves can propagate only northwestward, westward, or

southwestward. Second, very long waves (1/kx and 1/ky both much larger thanR) propagate
always westward and at the speed

c = − β0R
2, (9.31)

which is the largest wave speed allowed.

Lines of constant frequency ω in the (kx, ky) wavenumber space are circles defined by
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called the f -plane, and that where it is retained is called the beta plane. The next step in order
of accuracy is to retain the full spherical geometry (which we avoid throughout this book).

Rigorous justifications of the beta-plane approximation can be found in Veronis (1963, 1981),

Pedlosky (1987), and Verkley (1990).

Note that the beta-plane representation is validated at mid latitudes only if the β0y term
is small compared to the leading f0 term. For the motion’s meridional length scale L, this
implies

β =
β0L

f0
! 1, (9.20)

where the dimensionless ratio β can be called the planetary number.
The governing equations, having become
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are now mixtures of small and large terms. The larger ones (f0, g, and H terms) comprise

the otherwise steady, f -plane geostrophic dynamics; the smaller ones (time derivatives and
β0 terms) come as perturbations, which, although small, will govern the wave evolution.

In first approximation, the large terms dominate, and thus u # −(g/f0)∂η/∂y and v #
+(g/f0)∂η/∂x. Use of this first approximation in the small terms of (9.21a) and (9.21b)
yields
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These equations are trivial to solve with respect to u and v:
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These last expressions can be interpreted as consisting of the leading and first-correction

terms in a regular perturbation series of the velocity field. We identify the first term of each

expansion as the geostrophic velocity. By contrast, the next and smaller terms are called

ageostrophic.

Substitution in continuity equation (9.21c) leads to a single equation for the surface dis-

placement:
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These equations are trivial to solve with respect to u and v:
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These last expressions can be interpreted as consisting of the leading and first-correction

terms in a regular perturbation series of the velocity field. We identify the first term of each

expansion as the geostrophic velocity. By contrast, the next and smaller terms are called

ageostrophic.

Substitution in continuity equation (9.21c) leads to a single equation for the surface dis-

placement:

Geostrophic balance dominates

one equation for free surface
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∂η

∂t
− R2 ∂

∂t
∇2η − β0R

2 ∂η

∂x
= 0, (9.26)

where ∇2 is the two-dimensional Laplace operator and R =
√

gH/f0 is the deformation

radius, defined in (9.12) but now suitably amended to be a constant. Unlike the original set

of equations, this last equation has constant coefficients and a solution of the Fourier type,

cos(kxx + kyy − ωt), can be sought. The dispersion relation follows:

ω = − β0R
2 kx

1 + R2 (k2
x + k2

y)
, (9.27)

providing the frequency ω as a function of the wavenumber components kx and ky . The

waves are called planetary waves or Rossby waves, in honor of Carl-Gustaf Rossby, who

first proposed this wave theory to explain the systematic movement of midlatitude weather

patterns. We note immediately that if the beta corrections had not been retained (β0 = 0), the
frequency would have been nil. This is the ω = 0 solution of Section 9.3, which corresponds
to a steady geostrophic flow on the f -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,, having in

effect assumed a very small temporal Rossby number,RoT $ 1), we have retained only the
low frequency, the one much less than f0. In the parlance of wave dynamics, this is called

filtering.

That the frequency given by (9.27) is indeed small can be verified easily. With L (∼
1/kx ∼ 1/ky) as a measure of the wavelength, two cases can arise: either L <

∼ R or L >
∼ R;

the frequency scale is then given, respectively by

Shorter waves : L ! R, ω ∼ β0L (9.28)

Longer waves : L " R, ω ∼
β0R2

L
! β0L. (9.29)

In either case, our premise (9.20) that β0L is much less than f0 implies that ω is much smaller
than f0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the zonal

phase speed

cx =
ω

kx
=

−β0R2

1 + R2 (k2
x + k2

y)
(9.30)

is always negative, implying a phase propagation to the west (Figure 9-4). The sign of

the meridional phase speed cy = ω/ky is undetermined, since the wavenumber ky may

have either sign. Thus, planetary waves can propagate only northwestward, westward, or

southwestward. Second, very long waves (1/kx and 1/ky both much larger thanR) propagate
always westward and at the speed

c = − β0R
2, (9.31)

which is the largest wave speed allowed.

Lines of constant frequency ω in the (kx, ky) wavenumber space are circles defined by
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beach. Disastrous tsunamis occurred in the Pacific Ocean on 22 May 1960 and in the Indian

Ocean on 26 December 2004. Tsunamis are relatively easy to forecast with computer models.

The key to an effective warning system is the early detection of the originating earthquake,

to track the rapid propagation (at speed of
√

gH) of the tsunami from point of origin to the
coastline on time to issue a warning before the high wave strikes.

Before concluding this section, a note is in order to warn about the possibility of violating

the hydrostatic assumption. Indeed, at short wavelengths (on the order of the fluid depth or

shorter), the frequency is high (period much shorter than 2π/f ), and the vertical acceleration
(equal to ∂2η/∂t2 at the surface) becomes comparable to the gravitational acceleration g.
When this is the case, the hydrostatic approximation breaks down, the assumption of vertical

rigidity may no longer be invoked, and the problem becomes three-dimensional. For a study

of non-hydrostatic gravity waves, the reader is referred to Section 10 of LeBlond and Mysak

(1978) and Lecture 3 of Pedlosky (2003).

9.4 Planetary waves (Rossby waves)

Kelvin and Poincaré waves are relatively fast waves, and we may wonder whether rotating,

homogeneous fluids could not support another breed of slower waves. Could it be, for ex-

ample, that the steady geostrophic flows, those corresponding to the zero frequency solution

found in the preceding section, may develop a slow evolution (frequency slightly above zero)

when the system is modified somewhat? The answer is yes, and one such class consists of

planetary waves, in which the time evolution originates in the weak but important planetary

effect.

As we may recall from Section 2.5, on a spherical earth (or planet or star, in general), the

Coriolis parameter, f , is proportional to the rotation rate, Ω, times the sine of the latitude, ϕ:

f = 2Ω sin ϕ.

Large wave formations such as alternating cyclones and anticyclones contributing to our daily

weather and, to a lesser extent, Gulf Stream meanders span several degrees of latitude; for

them, it is necessary to consider the meridional change in the Coriolis parameter. If the co-

ordinate y is directed northward and is measured from a reference latitude ϕ0 (say, a latitude

somewhere in the middle of the wave under consideration), then ϕ = ϕ0 + y/a, where a is
the earth’s radius (6371 km). Considering y/a as a small perturbation, the Coriolis parameter
can be expanded in a Taylor series:

f = 2Ω sin ϕ0 + 2Ω
y

a
cosϕ0 + ... (9.18)

Retaining only the first two terms, we write

f = f0 + β0y, (9.19)

where f0 = 2Ω sinϕ0 is the reference Coriolis parameter and β0 = 2(Ω/a) cosϕ0 is the

so-called beta parameter. Typical midlatitude values on Earth are f0 = 8 × 10−5 s−1 and

β0 = 2 × 10−11 m−1s−1. The Cartesian framework where the beta term is not retained is
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The relative error is only on the order of α2. Replacement of the velocity components, u and
v, by their last expressions (9.38a) and (9.38b) in the continuity equation (9.37c) provides a
single equation for the surface displacement η, which to the leading order is

∂η

∂t
− R2 ∂

∂t
∇2η +

α0g

f

∂η

∂x
= 0. (9.39)

(The ageostrophic component of v is dropped from the α0v term for being on the order of

α2, whereas all other terms are on the order of α.) Note the analogy with equation (9.26) that
governs the planetary waves: It is identical, except for the substitution of α0g/f for−β0R2.

Here,the deformation radius is defined as

R =

√
gH0

f
, (9.40)

that is, the closest constant to the original definition (9.12). A wave solution of the type

cos(kxx + kyy − ωt) immediately provides the dispersion relation:

ω =
α0g

f

kx

1 + R2 (k2
x + k2

y)
, (9.41)

the topographic analogue of (9.27). Again, we note that if the additional ingredient, here

the bottom slope α0, had not been present, the frequency would have been nil, and the flow

would have been steady and geostrophic. Because they owe their existence to the bottom

slope, these waves are called topographic waves.

The discussion of their direction of propagation, phase speed, and maximum possible

frequency follows that of planetary waves. The phase speed in the x–direction — that is,

along the isobaths — is given by

cx =
ω

kx
=

α0g

f

1

1 + R2 (k2
x + k2

y)
(9.42)

and has the sign of α0f . Thus, topographic waves propagate in the Northern Hemisphere
with the shallower side on their right. Because planetary waves propagate westward, i.e., with

the north to their right, the analogy between the two kinds of waves is “shallow–north” and

“deep–south”. (In the Southern Hemisphere, topographic waves propagate with the shallower

side on their left, and the analogy is “shallow–south”, “deep–north”.)

The phase speed of topographic waves varies with the wavenumber; they are thus disper-

sive. The maximum possible wave speed along the isobaths is

c =
α0g

f
, (9.43)

which is the speed of the very long waves (k2
x + k2

y → 0). With (9.41) cast in the form

(

kx −
α0g

2fωR2

)2

+ k2
y =

(

α2
0g

2

4f2R4ω2
−

1

R2

)

, (9.44)

we note that there exists a maximum frequency:

|ω|max =
|α0|g
2|f |R

. (9.45)
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Figure 9-5 Geometric representation

of the planetary-wave dispersion rela-

tion. Each circle corresponds to a fixed

frequency, with frequency increasing

with decreasing radius. The group ve-

locity of the (kx, ky) wave is a vector

perpendicular to the circle at point (kx,

ky) and directed toward its center.

uniform bottom slope. We also return to the use of a constant Coriolis parameter. This latter

choice allows us to choose convenient directions for the reference axes, and, in anticipation

of an analogy with planetary waves, we align the y–axis with the direction of the topographic
gradient. We thus express the depth of the fluid at rest as:

H = H0 + α0y, (9.34)

whereH0 is a mean reference depth and α0 is the bottom slope, which is required to be gentle

so that

α =
α0L

H0
" 1, (9.35)

where L is the horizontal length scale of the motion. The topographic parameter α plays a
role similar to the planetary number, defined in (9.20).

The bottom slope gives rise to new terms in the continuity equation. Starting with the

continuity equation (7.17) for shallow water and expressing the instantaneous fluid layer

depth as (Figure 9-6)

h(x, y, t) = H0 + α0y + η(x, y, t), (9.36)

we obtain

∂η

∂t
+

(

u
∂η

∂x
+ v

∂η

∂y

)

+ (H0 + α0y)

(

∂u

∂x
+

∂v

∂y

)

+ η

(

∂u

∂x
+

∂v

∂y

)

+ α0v = 0.

Once again, we strike out the nonlinear terms by invoking a very small Rossby number (much

smaller than the temporal Rossby number) for the sake of linear dynamics. The term α0y can
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beach. Disastrous tsunamis occurred in the Pacific Ocean on 22 May 1960 and in the Indian

Ocean on 26 December 2004. Tsunamis are relatively easy to forecast with computer models.

The key to an effective warning system is the early detection of the originating earthquake,

to track the rapid propagation (at speed of
√

gH) of the tsunami from point of origin to the
coastline on time to issue a warning before the high wave strikes.

Before concluding this section, a note is in order to warn about the possibility of violating

the hydrostatic assumption. Indeed, at short wavelengths (on the order of the fluid depth or

shorter), the frequency is high (period much shorter than 2π/f ), and the vertical acceleration
(equal to ∂2η/∂t2 at the surface) becomes comparable to the gravitational acceleration g.
When this is the case, the hydrostatic approximation breaks down, the assumption of vertical

rigidity may no longer be invoked, and the problem becomes three-dimensional. For a study

of non-hydrostatic gravity waves, the reader is referred to Section 10 of LeBlond and Mysak

(1978) and Lecture 3 of Pedlosky (2003).

9.4 Planetary waves (Rossby waves)

Kelvin and Poincaré waves are relatively fast waves, and we may wonder whether rotating,

homogeneous fluids could not support another breed of slower waves. Could it be, for ex-

ample, that the steady geostrophic flows, those corresponding to the zero frequency solution

found in the preceding section, may develop a slow evolution (frequency slightly above zero)

when the system is modified somewhat? The answer is yes, and one such class consists of

planetary waves, in which the time evolution originates in the weak but important planetary

effect.

As we may recall from Section 2.5, on a spherical earth (or planet or star, in general), the

Coriolis parameter, f , is proportional to the rotation rate, Ω, times the sine of the latitude, ϕ:

f = 2Ω sin ϕ.

Large wave formations such as alternating cyclones and anticyclones contributing to our daily

weather and, to a lesser extent, Gulf Stream meanders span several degrees of latitude; for

them, it is necessary to consider the meridional change in the Coriolis parameter. If the co-

ordinate y is directed northward and is measured from a reference latitude ϕ0 (say, a latitude

somewhere in the middle of the wave under consideration), then ϕ = ϕ0 + y/a, where a is
the earth’s radius (6371 km). Considering y/a as a small perturbation, the Coriolis parameter
can be expanded in a Taylor series:

f = 2Ω sin ϕ0 + 2Ω
y

a
cosϕ0 + ... (9.18)

Retaining only the first two terms, we write

f = f0 + β0y, (9.19)

where f0 = 2Ω sinϕ0 is the reference Coriolis parameter and β0 = 2(Ω/a) cosϕ0 is the

so-called beta parameter. Typical midlatitude values on Earth are f0 = 8 × 10−5 s−1 and

β0 = 2 × 10−11 m−1s−1. The Cartesian framework where the beta term is not retained is

Planetary waves (Rossby waves) and topographic waves
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∂η

∂t
− R2 ∂

∂t
∇2η − β0R

2 ∂η

∂x
= 0, (9.26)

where ∇2 is the two-dimensional Laplace operator and R =
√

gH/f0 is the deformation

radius, defined in (9.12) but now suitably amended to be a constant. Unlike the original set

of equations, this last equation has constant coefficients and a solution of the Fourier type,

cos(kxx + kyy − ωt), can be sought. The dispersion relation follows:

ω = − β0R
2 kx

1 + R2 (k2
x + k2

y)
, (9.27)

providing the frequency ω as a function of the wavenumber components kx and ky . The

waves are called planetary waves or Rossby waves, in honor of Carl-Gustaf Rossby, who

first proposed this wave theory to explain the systematic movement of midlatitude weather

patterns. We note immediately that if the beta corrections had not been retained (β0 = 0), the
frequency would have been nil. This is the ω = 0 solution of Section 9.3, which corresponds
to a steady geostrophic flow on the f -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,, having in

effect assumed a very small temporal Rossby number,RoT $ 1), we have retained only the
low frequency, the one much less than f0. In the parlance of wave dynamics, this is called

filtering.

That the frequency given by (9.27) is indeed small can be verified easily. With L (∼
1/kx ∼ 1/ky) as a measure of the wavelength, two cases can arise: either L <

∼ R or L >
∼ R;

the frequency scale is then given, respectively by

Shorter waves : L ! R, ω ∼ β0L (9.28)

Longer waves : L " R, ω ∼
β0R2

L
! β0L. (9.29)

In either case, our premise (9.20) that β0L is much less than f0 implies that ω is much smaller
than f0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the zonal

phase speed

cx =
ω

kx
=

−β0R2

1 + R2 (k2
x + k2

y)
(9.30)

is always negative, implying a phase propagation to the west (Figure 9-4). The sign of

the meridional phase speed cy = ω/ky is undetermined, since the wavenumber ky may

have either sign. Thus, planetary waves can propagate only northwestward, westward, or

southwestward. Second, very long waves (1/kx and 1/ky both much larger thanR) propagate
always westward and at the speed

c = − β0R
2, (9.31)

which is the largest wave speed allowed.

Lines of constant frequency ω in the (kx, ky) wavenumber space are circles defined by
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∂η

∂t
− R2 ∂

∂t
∇2η − β0R

2 ∂η

∂x
= 0, (9.26)

where ∇2 is the two-dimensional Laplace operator and R =
√

gH/f0 is the deformation

radius, defined in (9.12) but now suitably amended to be a constant. Unlike the original set

of equations, this last equation has constant coefficients and a solution of the Fourier type,

cos(kxx + kyy − ωt), can be sought. The dispersion relation follows:

ω = − β0R
2 kx

1 + R2 (k2
x + k2

y)
, (9.27)

providing the frequency ω as a function of the wavenumber components kx and ky . The

waves are called planetary waves or Rossby waves, in honor of Carl-Gustaf Rossby, who

first proposed this wave theory to explain the systematic movement of midlatitude weather

patterns. We note immediately that if the beta corrections had not been retained (β0 = 0), the
frequency would have been nil. This is the ω = 0 solution of Section 9.3, which corresponds
to a steady geostrophic flow on the f -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,, having in

effect assumed a very small temporal Rossby number,RoT $ 1), we have retained only the
low frequency, the one much less than f0. In the parlance of wave dynamics, this is called

filtering.

That the frequency given by (9.27) is indeed small can be verified easily. With L (∼
1/kx ∼ 1/ky) as a measure of the wavelength, two cases can arise: either L <

∼ R or L >
∼ R;

the frequency scale is then given, respectively by

Shorter waves : L ! R, ω ∼ β0L (9.28)

Longer waves : L " R, ω ∼
β0R2

L
! β0L. (9.29)

In either case, our premise (9.20) that β0L is much less than f0 implies that ω is much smaller
than f0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the zonal

phase speed

cx =
ω

kx
=

−β0R2

1 + R2 (k2
x + k2

y)
(9.30)

is always negative, implying a phase propagation to the west (Figure 9-4). The sign of

the meridional phase speed cy = ω/ky is undetermined, since the wavenumber ky may

have either sign. Thus, planetary waves can propagate only northwestward, westward, or

southwestward. Second, very long waves (1/kx and 1/ky both much larger thanR) propagate
always westward and at the speed

c = − β0R
2, (9.31)

which is the largest wave speed allowed.

Lines of constant frequency ω in the (kx, ky) wavenumber space are circles defined by

dispersion relationship
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The relative error is only on the order of α2. Replacement of the velocity components, u and
v, by their last expressions (9.38a) and (9.38b) in the continuity equation (9.37c) provides a
single equation for the surface displacement η, which to the leading order is

∂η

∂t
− R2 ∂

∂t
∇2η +

α0g

f

∂η

∂x
= 0. (9.39)

(The ageostrophic component of v is dropped from the α0v term for being on the order of

α2, whereas all other terms are on the order of α.) Note the analogy with equation (9.26) that
governs the planetary waves: It is identical, except for the substitution of α0g/f for−β0R2.

Here,the deformation radius is defined as

R =

√
gH0

f
, (9.40)

that is, the closest constant to the original definition (9.12). A wave solution of the type

cos(kxx + kyy − ωt) immediately provides the dispersion relation:

ω =
α0g

f

kx

1 + R2 (k2
x + k2

y)
, (9.41)

the topographic analogue of (9.27). Again, we note that if the additional ingredient, here

the bottom slope α0, had not been present, the frequency would have been nil, and the flow

would have been steady and geostrophic. Because they owe their existence to the bottom

slope, these waves are called topographic waves.

The discussion of their direction of propagation, phase speed, and maximum possible

frequency follows that of planetary waves. The phase speed in the x–direction — that is,

along the isobaths — is given by

cx =
ω

kx
=

α0g

f

1

1 + R2 (k2
x + k2

y)
(9.42)

and has the sign of α0f . Thus, topographic waves propagate in the Northern Hemisphere
with the shallower side on their right. Because planetary waves propagate westward, i.e., with

the north to their right, the analogy between the two kinds of waves is “shallow–north” and

“deep–south”. (In the Southern Hemisphere, topographic waves propagate with the shallower

side on their left, and the analogy is “shallow–south”, “deep–north”.)

The phase speed of topographic waves varies with the wavenumber; they are thus disper-

sive. The maximum possible wave speed along the isobaths is

c =
α0g

f
, (9.43)

which is the speed of the very long waves (k2
x + k2

y → 0). With (9.41) cast in the form

(

kx −
α0g

2fωR2

)2

+ k2
y =

(

α2
0g

2

4f2R4ω2
−

1

R2

)

, (9.44)

we note that there exists a maximum frequency:

|ω|max =
|α0|g
2|f |R

. (9.45)

dispersion relationship
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∂η

∂t
− R2 ∂

∂t
∇2η − β0R

2 ∂η

∂x
= 0, (9.26)

where ∇2 is the two-dimensional Laplace operator and R =
√

gH/f0 is the deformation

radius, defined in (9.12) but now suitably amended to be a constant. Unlike the original set

of equations, this last equation has constant coefficients and a solution of the Fourier type,

cos(kxx + kyy − ωt), can be sought. The dispersion relation follows:

ω = − β0R
2 kx

1 + R2 (k2
x + k2

y)
, (9.27)

providing the frequency ω as a function of the wavenumber components kx and ky . The

waves are called planetary waves or Rossby waves, in honor of Carl-Gustaf Rossby, who

first proposed this wave theory to explain the systematic movement of midlatitude weather

patterns. We note immediately that if the beta corrections had not been retained (β0 = 0), the
frequency would have been nil. This is the ω = 0 solution of Section 9.3, which corresponds
to a steady geostrophic flow on the f -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,, having in

effect assumed a very small temporal Rossby number,RoT $ 1), we have retained only the
low frequency, the one much less than f0. In the parlance of wave dynamics, this is called

filtering.

That the frequency given by (9.27) is indeed small can be verified easily. With L (∼
1/kx ∼ 1/ky) as a measure of the wavelength, two cases can arise: either L <

∼ R or L >
∼ R;

the frequency scale is then given, respectively by

Shorter waves : L ! R, ω ∼ β0L (9.28)

Longer waves : L " R, ω ∼
β0R2

L
! β0L. (9.29)

In either case, our premise (9.20) that β0L is much less than f0 implies that ω is much smaller
than f0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the zonal

phase speed

cx =
ω

kx
=

−β0R2

1 + R2 (k2
x + k2

y)
(9.30)

is always negative, implying a phase propagation to the west (Figure 9-4). The sign of

the meridional phase speed cy = ω/ky is undetermined, since the wavenumber ky may

have either sign. Thus, planetary waves can propagate only northwestward, westward, or

southwestward. Second, very long waves (1/kx and 1/ky both much larger thanR) propagate
always westward and at the speed

c = − β0R
2, (9.31)

which is the largest wave speed allowed.

Lines of constant frequency ω in the (kx, ky) wavenumber space are circles defined by

dispersion relationship
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− R2 ∂

∂t
∇2η − β0R

2 ∂η

∂x
= 0, (9.26)

where ∇2 is the two-dimensional Laplace operator and R =
√

gH/f0 is the deformation

radius, defined in (9.12) but now suitably amended to be a constant. Unlike the original set

of equations, this last equation has constant coefficients and a solution of the Fourier type,

cos(kxx + kyy − ωt), can be sought. The dispersion relation follows:

ω = − β0R
2 kx

1 + R2 (k2
x + k2

y)
, (9.27)

providing the frequency ω as a function of the wavenumber components kx and ky . The

waves are called planetary waves or Rossby waves, in honor of Carl-Gustaf Rossby, who

first proposed this wave theory to explain the systematic movement of midlatitude weather

patterns. We note immediately that if the beta corrections had not been retained (β0 = 0), the
frequency would have been nil. This is the ω = 0 solution of Section 9.3, which corresponds
to a steady geostrophic flow on the f -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,, having in

effect assumed a very small temporal Rossby number,RoT $ 1), we have retained only the
low frequency, the one much less than f0. In the parlance of wave dynamics, this is called

filtering.

That the frequency given by (9.27) is indeed small can be verified easily. With L (∼
1/kx ∼ 1/ky) as a measure of the wavelength, two cases can arise: either L <

∼ R or L >
∼ R;

the frequency scale is then given, respectively by

Shorter waves : L ! R, ω ∼ β0L (9.28)

Longer waves : L " R, ω ∼
β0R2

L
! β0L. (9.29)

In either case, our premise (9.20) that β0L is much less than f0 implies that ω is much smaller
than f0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the zonal

phase speed

cx =
ω

kx
=

−β0R2

1 + R2 (k2
x + k2

y)
(9.30)

is always negative, implying a phase propagation to the west (Figure 9-4). The sign of

the meridional phase speed cy = ω/ky is undetermined, since the wavenumber ky may

have either sign. Thus, planetary waves can propagate only northwestward, westward, or

southwestward. Second, very long waves (1/kx and 1/ky both much larger thanR) propagate
always westward and at the speed

c = − β0R
2, (9.31)

which is the largest wave speed allowed.

Lines of constant frequency ω in the (kx, ky) wavenumber space are circles defined by
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∂η

∂t
− R
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∂t
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η − β0R

2 ∂η

∂x
= 0, (9.26)

where ∇2 is the two-dimensional Laplace operator and R =
√

gH/f0 is the deformation
radius, defined in (9.12) but now suitably amended to be a constant. Unlike the original set
of equations, this last equation has constant coefficients and a solution of the Fourier type,
cos(kxx + kyy − ωt), can be sought. The dispersion relation follows:

ω = − β0R
2 kx

1 + R2 (k2
x

+ k2
y
)

, (9.27)

providing the frequency ω as a function of the wavenumber components kx and ky . The
waves are called planetary waves or Rossby waves, in honor of Carl-Gustaf Rossby, who
first proposed this wave theory to explain the systematic movement of midlatitude weather
patterns. We note immediately that if the beta corrections had not been retained (β0 = 0), the
frequency would have been nil. This is the ω = 0 solution of Section 9.3, which corresponds
to a steady geostrophic flow on the f -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,, having in
effect assumed a very small temporal Rossby number,RoT $ 1), we have retained only the
low frequency, the one much less than f0. In the parlance of wave dynamics, this is called
filtering.

That the frequency given by (9.27) is indeed small can be verified easily. With L (∼
1/kx ∼ 1/ky) as a measure of the wavelength, two cases can arise: either L <

∼ R or L >

∼ R;
the frequency scale is then given, respectively by

Shorter waves : L ! R, ω ∼ β0L (9.28)

Longer waves : L " R, ω ∼
β0R

2

L
! β0L. (9.29)

In either case, our premise (9.20) that β0L is much less than f0 implies that ω is much smaller
than f0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the zonal
phase speed

cx =
ω

kx

=
−β0R

2

1 + R2 (k2
x

+ k2
y
)

(9.30)

is always negative, implying a phase propagation to the west (Figure 9-4). The sign of
the meridional phase speed cy = ω/ky is undetermined, since the wavenumber ky may
have either sign. Thus, planetary waves can propagate only northwestward, westward, or
southwestward. Second, very long waves (1/kx and 1/ky both much larger thanR) propagate
always westward and at the speed

c = − β0R
2
, (9.31)

which is the largest wave speed allowed.
Lines of constant frequency ω in the (kx, ky) wavenumber space are circles defined by
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gH/f0 is the deformation

radius, defined in (9.12) but now suitably amended to be a constant. Unlike the original set

of equations, this last equation has constant coefficients and a solution of the Fourier type,

cos(kxx + kyy − ωt), can be sought. The dispersion relation follows:
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providing the frequency ω as a function of the wavenumber components kx and ky . The

waves are called planetary waves or Rossby waves, in honor of Carl-Gustaf Rossby, who

first proposed this wave theory to explain the systematic movement of midlatitude weather

patterns. We note immediately that if the beta corrections had not been retained (β0 = 0), the
frequency would have been nil. This is the ω = 0 solution of Section 9.3, which corresponds
to a steady geostrophic flow on the f -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,, having in

effect assumed a very small temporal Rossby number,RoT $ 1), we have retained only the
low frequency, the one much less than f0. In the parlance of wave dynamics, this is called

filtering.

That the frequency given by (9.27) is indeed small can be verified easily. With L (∼
1/kx ∼ 1/ky) as a measure of the wavelength, two cases can arise: either L <

∼ R or L >
∼ R;

the frequency scale is then given, respectively by

Shorter waves : L ! R, ω ∼ β0L (9.28)

Longer waves : L " R, ω ∼
β0R2

L
! β0L. (9.29)

In either case, our premise (9.20) that β0L is much less than f0 implies that ω is much smaller
than f0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the zonal

phase speed
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=

−β0R2
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is always negative, implying a phase propagation to the west (Figure 9-4). The sign of

the meridional phase speed cy = ω/ky is undetermined, since the wavenumber ky may

have either sign. Thus, planetary waves can propagate only northwestward, westward, or

southwestward. Second, very long waves (1/kx and 1/ky both much larger thanR) propagate
always westward and at the speed

c = − β0R
2, (9.31)

which is the largest wave speed allowed.

Lines of constant frequency ω in the (kx, ky) wavenumber space are circles defined by
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∂η

∂t
− R2 ∂

∂t
∇2η − β0R

2 ∂η

∂x
= 0, (9.26)

where ∇2 is the two-dimensional Laplace operator and R =
√

gH/f0 is the deformation

radius, defined in (9.12) but now suitably amended to be a constant. Unlike the original set

of equations, this last equation has constant coefficients and a solution of the Fourier type,

cos(kxx + kyy − ωt), can be sought. The dispersion relation follows:

ω = − β0R
2 kx

1 + R2 (k2
x + k2

y)
, (9.27)

providing the frequency ω as a function of the wavenumber components kx and ky . The

waves are called planetary waves or Rossby waves, in honor of Carl-Gustaf Rossby, who

first proposed this wave theory to explain the systematic movement of midlatitude weather

patterns. We note immediately that if the beta corrections had not been retained (β0 = 0), the
frequency would have been nil. This is the ω = 0 solution of Section 9.3, which corresponds
to a steady geostrophic flow on the f -plane. The absence of the other two roots is explained
by our approximation. Indeed, treating the time derivatives as small terms (i.e.,, having in

effect assumed a very small temporal Rossby number,RoT $ 1), we have retained only the
low frequency, the one much less than f0. In the parlance of wave dynamics, this is called

filtering.

That the frequency given by (9.27) is indeed small can be verified easily. With L (∼
1/kx ∼ 1/ky) as a measure of the wavelength, two cases can arise: either L <

∼ R or L >
∼ R;

the frequency scale is then given, respectively by

Shorter waves : L ! R, ω ∼ β0L (9.28)

Longer waves : L " R, ω ∼
β0R2

L
! β0L. (9.29)

In either case, our premise (9.20) that β0L is much less than f0 implies that ω is much smaller
than f0 (subinertial wave), as we anticipated.

Let us now explore other properties of planetary waves. First and foremost, the zonal

phase speed

cx =
ω

kx
=

−β0R2

1 + R2 (k2
x + k2

y)
(9.30)

is always negative, implying a phase propagation to the west (Figure 9-4). The sign of

the meridional phase speed cy = ω/ky is undetermined, since the wavenumber ky may

have either sign. Thus, planetary waves can propagate only northwestward, westward, or

southwestward. Second, very long waves (1/kx and 1/ky both much larger thanR) propagate
always westward and at the speed

c = − β0R
2, (9.31)

which is the largest wave speed allowed.

Lines of constant frequency ω in the (kx, ky) wavenumber space are circles defined by

Planetary waves (Rossby waves)

dispersion relationship
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