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Figure 6-1 Rhône River plume dis-
charging in the Gulf of Lions (circa
43◦N) and carrying sediments into
the Mediterranean Sea. This satel-
lite picture was taken on 26 February
1999. (Satellite image provided by
the SeaWiFS Project, NASA/Goddard
Space Flight Center)

satellite picture, showing wind advection of sand from the Sahara Desert westward from
Africa to Cape Verde (white band across the lower part of the picture) at the same time as,
and independently from, marine transport of suspended matter southwestward from the Cape
Verde islands (Von Kármán vortices in left of middle of the picture). While sand is being
blown quickly and without much diffusion in the air, the sediments follow convoluted paths
in the water, pointing to a disparity between the relative effects of advection and diffusion in
the atmosphere and ocean.

Often, the substance being carried by the fluid is not simply moved and diffused by the
flow. It may also be created or lost along the way. Such is the case of particle matter, which
tends to settle at the bottom. Chemical species can be produced by reaction between parent
chemicals and be lost by participating in other reactions. An example of this is sulfuric
acid (H2SO4) in the atmosphere: It is produced by reaction of sulfur dioxide (SO2) from
combustion and lost by precipitation (acid rain or snow). Tritium, a naturally radioactive
form of hydrogen enters the ocean by contact with air at the surface and disintegrates along
its oceanic journey to becomeHelium. Dissolved oxygen in the sea is consumed by biological
activity and is replenished by contact with air at the surface.

To incorporate these processes, we augment the advection-diffusion equation (6.1) by
adding source and sink terms in the right-hand side:
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where the term S stands for the source, the formulation of which depends on the particular
process of formation of the substance, and K is a coefficient of decay, which affects how
quickly (largeK) or slowly (smallK) the substance is being lost.

At one-dimension, say in the x–direction, and with constant diffusivity A, the equation
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Figure 6-2 Sahara dust blown by the wind from the African continent over the ocean toward Cape
Verde islands (15–17◦N), while suspended matter in the water is being transported southwestward by
a series of Von Kármán vortices in the wake of the islands. Note in passing how these vortices in the
water affect the overlying cloud patterns. (Jacques Descloitres, MODIS Land Science Team)

reduces to:
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Several properties of the advection-diffusion equation are worth noting because they bear
on the numerical procedures that follow: In the absence of source and sink, the total amount
of the substance is conserved, and, in the further absence of diffusion, the variance of the
concentration distribution, too, is conserved over time.

When we integrate Equation (6.2) over the domain volume V , we can readily integrate
the diffusion terms and, if the flux is zero at all boundaries, these vanish, and we obtain:
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After an integration by parts, the first set of terms on the right can be rewritten as
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as long as there is no flux or no advection at all boundaries. Invoking the continuity equation
(4.21d) reduces the first term on the right to zero, and we obtain simply:
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Since the concentration c represents the amount of the substance per volume, its integral over
the volume is its total amount. Equation (6.4) simply states that this amount remains constant
over time when there is no source (S = 0) or sink (K = 0). Put another way, the substance
is moved around but conserved.

Now, if we multiply Equation (6.2) by c and then integrate over the domain, we can
integrate the diffusion terms by parts and, if the flux is again zero at all boundaries, we have:
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With no diffusion, source or sink, the right-hand side is zero, and variance is conserved in
time. Diffusion and decay tend to reduce variance, whereas a source tends to increase it.

This conservation property can be extended, still in the absence of diffusion, source and
sink, to any power cp of c, by multiplying the equation by cp−1 before integration. The
conservation property even holds for any functionF (c). It goes without saying that numerical
methods cannot conserve all these quantities, but it is highly desirable that they conserve at
least the first two (total amount and variance).

There is one more property worth mentioning, which we will state without demonstra-
tion but justify in a few words. Because diffusion acts to smooth the distribution of c, it
removes the substance from the areas of higher concentration and brings it into regions of
lower concentration. Hence, due to diffusion alone, the maximum of c can only diminish and
its minimum can only increase. Advection only redistributes existing values, thus not chang-
ing either minimum and maximum. In the absence of source and sink, therefore, no future
value of c can fall outside the initial range of values. This is called the max-min property.
Exceptions are the presence of a source or sink, and the import through one of the boundaries
of concentration values outside the initial range.

We call a numerical scheme that maintains the max-min property a monotonic scheme or
monotonicity preserving scheme1. Alternatively, the property of boundedness is often used
to describe a physical solution that does not generate new extrema. If c is initially positive
everywhere, as it should be, the absence of new extrema keeps the variable positive at all
future times, another property called positiveness. A monotonic scheme is thus positive but
the reverse is not necessarily true.

6.2 Relative importance of advection: The Peclet number
Since the preceding equations combine the effects of both advection and diffusion, it is im-
portant to compare the relative importance of one to the other. In a specific situation, could
it be that one dominates over the other or that both impact concentration values to the same
extent? To answer this question, we turn once again to scales. Introducing a length scale L,
velocity scale U , diffusivity scale D, and a scale ∆c to measure concentration differences,

1Some computational fluid dynamicists do make a difference between these two labels, but this minor point lies
beyond our present text.

Advection only redistributes existing values, thus not changing either minimum 
and maximum, max/min property
numerical scheme that have this properties are called monotonic schemes
or monotonicity preserving. Also, c should always remain positive --> positiveness

Hard to find numerical schemes that conserve all the higher moments.
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we note that advection scales like U∆c/L and diffusion likeD∆c/L2. We can then compare
the two processes by forming the ratio of their scales:

advection
diffusion

=
U∆c/L

D∆c/L2
=

UL

D
.

This ratio is by construction dimensionless. It bears the name of Peclet number2 and is
denoted by Pe:

Pe =
UL

D
, (6.6)

where the scales U , L and D may stand for the scales of either horizontal (u, v, x, y and
A) or vertical (w, z and κ) variables but not a mix of them. The Peclet number leads to an
immediate criterion, as follows.

If Pe ≪ 1 (in practice, if Pe < 0.1), the advection term is significantly smaller than
the diffusion term. Physically, diffusion dominates and advection is negligible. Diffusive
spreading occurs almost symmetrically despite the directional bias of the weak flow. If we
wish to simplify the problem, we may drop the advection term [u∂c/∂x in (6.3)], as if uwere
zero. The relative error committed in the solution is expected to be on the order of the Peclet
number, and the smaller Pe, the smaller the error. The methods developed in the preceding
chapter were based on such simplification and thus apply whenever Pe≪ 1.

If Pe ≫ 1 (in practice, if Pe > 10), it is the reverse: the advection term is now sig-
nificantly larger than the diffusion term. Physically, advection dominates and diffusion is
negligible. Spreading is weak, and the patch of substance is mostly moved along, and pos-
sibly distorted by, the flow. If we wish to simplify the problem, we may drop the diffusion
term [D∂2c/∂x2 in (6.3)], as ifD were zero. The relative error committed in the solution by
so doing is expected to be on the order of the inverse of the Peclet number (1/Pe), and the
larger Pe, the smaller the error.

6.3 Highly advective situations
When a system is highly advective in one direction (high Pe number based on scales U , L
and D corresponding to that direction), diffusion is negligible in that same direction. This
is not to say that it is also negligible in the other directions. For example, high advection
in the horizontal does not preclude vertical diffusion, as this is often the case in the lower
atmosphere. In such a case, the governing equation is
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Because the diffusion terms are of higher order (second derivatives) than those of advec-
tion (first derivatives), the neglect of a diffusion term reduces the order of the equation and,
therefore, also reduces the need of boundary conditions by one in the respective direction.
The boundary condition at the downstream end of the domain must be dropped: The concen-
tration and flux there are whatever the flow brings to that point. A problem occurs when the

2In honor of Jean Claude Eugène Péclet (1793–1857), French physicist who wrote a treatise on heat transfer.
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situation is highly advective and the small diffusion term is not dropped. In that case, because
the order of the equation is not reduced, a boundary condition is enforced at the downstream
end, and a locally high gradient of concentration may occur.

To see this, consider the one-dimensional, steady situation with no source and sink, with
constant velocity and diffusivity in the x–direction. The equation is

u
dc

dx
= A

d2c

dx2
, (6.8)

and its most general solution is

c(x) = C0 + C1e
ux/A

. (6.9)

For u > 0, the downstream end is to the right of the domain, and the solution increases
exponentially towards the right boundary. Rather, it could be said that the solution decays
away from this boundary as x decreases away from it. In other words, a boundary layer
exists at the donwstream end. The e-folding length of this boundary layer is A/u, and it
can be very short in a highly advective situation (large u and small A). Put another way,
the Peclet number is the ratio of the domain length to this boundary-layer thickness, and the
larger the Peclet number, the smaller the fraction of the domain occupied by the boundary
layer. Why do we need to worry about this? Because in a numerical model it may happen
that the boundary-layer thickness falls below the grid size. It is therefore important to check
the Peclet number in relation to the spatial resolution. Should the ratio of the grid size to the
length scale of the system be comparable to, or larger than, the inverse of the Peclet number,
diffusion must be neglected in that direction, or, if it must be retained for some reason, special
care must be taken at the downstream boundary.

6.4 Centered and upwind advection schemes
In GFD, advection is generally dominant compared to diffusion, and we therefore begin with
the case of pure advection of a tracer concentration c(x, t) along the x–direction. The aim is
to solve numerically the following equation:

∂c
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+ u

∂c

∂x
= 0. (6.10)

For simplicity, we further take the velocity u as constant and positive so that advection carries
c in the positive x–direction. The exact solution of this equation is

c(x, t) = c0(x − ut), (6.11)

where c0(x) is the initial concentration distribution (at t = 0).
A spatial integration from xi−1/2 to xi+1/2 across a grid cell (Figure 6-3) leads to the

following budget

dc̄i

dt
+
qi+1/2 − qi−1/2

∆x
= 0, qi−1/2 = uc|

i−1/2
, (6.12)

u/A = L/T / L2/T =1/LB e-folding length scale Peclet Number = LD / LB
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Figure 6-3 One-dimensional finite-
volume approach with fluxes at the
interfaces between grid cells for a
straightforward budget calculation.

which is the basis for the finite-volume technique, as in (3.33). To close the system, we need
to relate the local fluxes q to the cell-average concentrations c̄. To do so we must introduce
an approximation, because we do not know the actual value of c at the interfaces between
cells, but only the average value in the cell on each side of it. It appears reasonable to use the
following, consistent, numerical interpolation for the flux:

q̃i−1/2 = u

(
c̄i + c̄i−1

2

)

, (6.13)

which is tantamount to assuming that the local tracer concentration at the interface is equal
to the mean of the surrounding cell averages. Before proceeding with time discretization, we
can show that this centered approximation conserves not only the total amount of substance
but also its variance,

∑

i
c̄i and

∑

i
(c̄i)

2, respectively. Substitution of the flux approximation
into (6.12) leads to the following semi-discrete equation for cell-averaged concentrations:

dc̄i

dt
= − u

c̄i+1 − c̄i−1

2∆x
. (6.14)

Sum over index i leads to cancellation of terms by pairs on the right, leaving only the first
and last c̄ values. Then, multiplication of the same equation by ci followed by the sum over
the domain provides the time-evolution equation of the discretized variance:

d

dt

(

∑

i

(c̄i)
2

)

= −
u

∆x

∑

i

c̄ic̄i+1 +
u

∆x

∑

i

c̄ic̄i−1,

where the sum covers all grid cells. By shifting the index of the last term from i to i + 1 ,
we note again cancellation of terms by pairs, leaving only contributions from the first and
last grid points. Thus, except for possible contributions from the boundaries, the numerical
scheme conserves both total amount and variance as the original equation does.

However, the conservation of global variance only holds for the semi-discrete equations.
When time discretization is introduced as it must eventually be, conservation properties are
often lost. In the literature it is not always clearly stated whether conservation properties hold
for the semi-discrete or fully-discretized equations. The distinction, however, is important:
The centered-space differencing conserves the variance of the semi-discrete solution, but a
simple explicit time discretization renders the scheme unconditionnaly unstable and certainly
does not conserve the variance. On the contrary, the latter quantity rapidly increases. Only a
scheme that is both stable and consistent leads in the limit of vanishing time step to a solution
that satisfies (6.12) and ensures conservation of the variance.
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situation is highly advective and the small diffusion term is not dropped. In that case, because
the order of the equation is not reduced, a boundary condition is enforced at the downstream
end, and a locally high gradient of concentration may occur.

To see this, consider the one-dimensional, steady situation with no source and sink, with
constant velocity and diffusivity in the x–direction. The equation is

u
dc

dx
= A

d2c

dx2
, (6.8)

and its most general solution is

c(x) = C0 + C1e
ux/A

. (6.9)

For u > 0, the downstream end is to the right of the domain, and the solution increases
exponentially towards the right boundary. Rather, it could be said that the solution decays
away from this boundary as x decreases away from it. In other words, a boundary layer
exists at the donwstream end. The e-folding length of this boundary layer is A/u, and it
can be very short in a highly advective situation (large u and small A). Put another way,
the Peclet number is the ratio of the domain length to this boundary-layer thickness, and the
larger the Peclet number, the smaller the fraction of the domain occupied by the boundary
layer. Why do we need to worry about this? Because in a numerical model it may happen
that the boundary-layer thickness falls below the grid size. It is therefore important to check
the Peclet number in relation to the spatial resolution. Should the ratio of the grid size to the
length scale of the system be comparable to, or larger than, the inverse of the Peclet number,
diffusion must be neglected in that direction, or, if it must be retained for some reason, special
care must be taken at the downstream boundary.

6.4 Centered and upwind advection schemes
In GFD, advection is generally dominant compared to diffusion, and we therefore begin with
the case of pure advection of a tracer concentration c(x, t) along the x–direction. The aim is
to solve numerically the following equation:

∂c

∂t
+ u

∂c

∂x
= 0. (6.10)

For simplicity, we further take the velocity u as constant and positive so that advection carries
c in the positive x–direction. The exact solution of this equation is

c(x, t) = c0(x − ut), (6.11)

where c0(x) is the initial concentration distribution (at t = 0).
A spatial integration from xi−1/2 to xi+1/2 across a grid cell (Figure 6-3) leads to the

following budget

dc̄i

dt
+
qi+1/2 − qi−1/2

∆x
= 0, qi−1/2 = uc|

i−1/2
, (6.12)

6.4. ADVECTION SCHEMES 153

xi−1/2 xi+1/2

c̄i

qi−1/2

c

x

qi+1/2

Figure 6-3 One-dimensional finite-
volume approach with fluxes at the
interfaces between grid cells for a
straightforward budget calculation.

which is the basis for the finite-volume technique, as in (3.33). To close the system, we need
to relate the local fluxes q to the cell-average concentrations c̄. To do so we must introduce
an approximation, because we do not know the actual value of c at the interfaces between
cells, but only the average value in the cell on each side of it. It appears reasonable to use the
following, consistent, numerical interpolation for the flux:

q̃i−1/2 = u

(
c̄i + c̄i−1

2

)

, (6.13)

which is tantamount to assuming that the local tracer concentration at the interface is equal
to the mean of the surrounding cell averages. Before proceeding with time discretization, we
can show that this centered approximation conserves not only the total amount of substance
but also its variance,

∑

i
c̄i and

∑

i
(c̄i)

2, respectively. Substitution of the flux approximation
into (6.12) leads to the following semi-discrete equation for cell-averaged concentrations:

dc̄i

dt
= − u

c̄i+1 − c̄i−1

2∆x
. (6.14)

Sum over index i leads to cancellation of terms by pairs on the right, leaving only the first
and last c̄ values. Then, multiplication of the same equation by ci followed by the sum over
the domain provides the time-evolution equation of the discretized variance:

d

dt

(

∑

i

(c̄i)
2

)

= −
u

∆x

∑

i

c̄ic̄i+1 +
u

∆x

∑

i

c̄ic̄i−1,

where the sum covers all grid cells. By shifting the index of the last term from i to i + 1 ,
we note again cancellation of terms by pairs, leaving only contributions from the first and
last grid points. Thus, except for possible contributions from the boundaries, the numerical
scheme conserves both total amount and variance as the original equation does.

However, the conservation of global variance only holds for the semi-discrete equations.
When time discretization is introduced as it must eventually be, conservation properties are
often lost. In the literature it is not always clearly stated whether conservation properties hold
for the semi-discrete or fully-discretized equations. The distinction, however, is important:
The centered-space differencing conserves the variance of the semi-discrete solution, but a
simple explicit time discretization renders the scheme unconditionnaly unstable and certainly
does not conserve the variance. On the contrary, the latter quantity rapidly increases. Only a
scheme that is both stable and consistent leads in the limit of vanishing time step to a solution
that satisfies (6.12) and ensures conservation of the variance.

approximation of the flux in between cells

finite volume approach

this form of the equation conserves the total amount of substance and its 
variance (only for semi-discrete form, properties are lost when adding time discretization)
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which is the basis for the finite-volume technique, as in (3.33). To close the system, we need
to relate the local fluxes q to the cell-average concentrations c̄. To do so we must introduce
an approximation, because we do not know the actual value of c at the interfaces between
cells, but only the average value in the cell on each side of it. It appears reasonable to use the
following, consistent, numerical interpolation for the flux:

q̃i−1/2 = u

(
c̄i + c̄i−1

2

)

, (6.13)

which is tantamount to assuming that the local tracer concentration at the interface is equal
to the mean of the surrounding cell averages. Before proceeding with time discretization, we
can show that this centered approximation conserves not only the total amount of substance
but also its variance,

∑

i
c̄i and

∑

i
(c̄i)

2, respectively. Substitution of the flux approximation
into (6.12) leads to the following semi-discrete equation for cell-averaged concentrations:
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dt
= − u

c̄i+1 − c̄i−1

2∆x
. (6.14)

Sum over index i leads to cancellation of terms by pairs on the right, leaving only the first
and last c̄ values. Then, multiplication of the same equation by ci followed by the sum over
the domain provides the time-evolution equation of the discretized variance:
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where the sum covers all grid cells. By shifting the index of the last term from i to i + 1 ,
we note again cancellation of terms by pairs, leaving only contributions from the first and
last grid points. Thus, except for possible contributions from the boundaries, the numerical
scheme conserves both total amount and variance as the original equation does.

However, the conservation of global variance only holds for the semi-discrete equations.
When time discretization is introduced as it must eventually be, conservation properties are
often lost. In the literature it is not always clearly stated whether conservation properties hold
for the semi-discrete or fully-discretized equations. The distinction, however, is important:
The centered-space differencing conserves the variance of the semi-discrete solution, but a
simple explicit time discretization renders the scheme unconditionnaly unstable and certainly
does not conserve the variance. On the contrary, the latter quantity rapidly increases. Only a
scheme that is both stable and consistent leads in the limit of vanishing time step to a solution
that satisfies (6.12) and ensures conservation of the variance.
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which is the basis for the finite-volume technique, as in (3.33). To close the system, we need
to relate the local fluxes q to the cell-average concentrations c̄. To do so we must introduce
an approximation, because we do not know the actual value of c at the interfaces between
cells, but only the average value in the cell on each side of it. It appears reasonable to use the
following, consistent, numerical interpolation for the flux:

q̃i−1/2 = u

(
c̄i + c̄i−1

2

)

, (6.13)

which is tantamount to assuming that the local tracer concentration at the interface is equal
to the mean of the surrounding cell averages. Before proceeding with time discretization, we
can show that this centered approximation conserves not only the total amount of substance
but also its variance,

∑

i
c̄i and

∑

i
(c̄i)

2, respectively. Substitution of the flux approximation
into (6.12) leads to the following semi-discrete equation for cell-averaged concentrations:
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dt
= − u

c̄i+1 − c̄i−1

2∆x
. (6.14)

Sum over index i leads to cancellation of terms by pairs on the right, leaving only the first
and last c̄ values. Then, multiplication of the same equation by ci followed by the sum over
the domain provides the time-evolution equation of the discretized variance:
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where the sum covers all grid cells. By shifting the index of the last term from i to i + 1 ,
we note again cancellation of terms by pairs, leaving only contributions from the first and
last grid points. Thus, except for possible contributions from the boundaries, the numerical
scheme conserves both total amount and variance as the original equation does.

However, the conservation of global variance only holds for the semi-discrete equations.
When time discretization is introduced as it must eventually be, conservation properties are
often lost. In the literature it is not always clearly stated whether conservation properties hold
for the semi-discrete or fully-discretized equations. The distinction, however, is important:
The centered-space differencing conserves the variance of the semi-discrete solution, but a
simple explicit time discretization renders the scheme unconditionnaly unstable and certainly
does not conserve the variance. On the contrary, the latter quantity rapidly increases. Only a
scheme that is both stable and consistent leads in the limit of vanishing time step to a solution
that satisfies (6.12) and ensures conservation of the variance.

resulting equation



An example of time-discretization that conserves variance. 
Trapezoidal
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We might wonder why place emphasis on such conservation properties of semi-discrete
equations, since by the time the algorithm is keyed into the computer it will always rely
on fully-discretized numerical approximations in both space and time. A reason to look at
semi-discrete conservation properties is that some special time discretizations maintain the
property in the fully-discretized case. We now show that in the case of variance conservation,
the trapezoidal time discretization does so. Consider the more general linear equation

dc̃i

dt
+L(c̃i) = 0, (6.15)

where L stands for a linear discretization operator applied to the discrete field c̃i. For our
centered advection, the operator isL(c̃i) = u(c̃i+1−c̃i−1)/(2∆x). Suppose that the operator
is designed to satisfy conservation of variance, which demands that at any moment t and for
any discrete field c̃i the following relation holds:

∑

i

c̃iL(c̃i) = 0, (6.16)

because only then does
∑

i
c̃i dc̃i/dt vanish according to (6.15) and (6.16). The trapezoidal

time discretization applied to (6.15) leads to

c̃
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∆t
= −
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n+1
i

) +L(c̃n

i
)

2
= −

1

2
L(c̃

n+1
i

+ c̃
n

i
), (6.17)

where the last equality follows from the linearity of operatorL. Multiplying this equation by
(c̃

n+1
i

+ c̃n

i
) and summing over the domain then yields

∑
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(c̃
n+1
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)2 − (c̃n
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∑

i

(c̃
n+1
i
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n

i
)L(c̃

n+1
i

+ c̃
n

i
). (6.18)

The term on the right is zero by virtue of (6.16). Therefore, any spatial discretization scheme
that conserves variance continues to conserve variance if the trapezoidal scheme is used for
the time discretization. As an additional benefit, the resulting scheme is also unconditionally
stable. This does not mean, however, that the scheme is satisfactory, as Numerical Exercise
6-9 shows for the advection of the top-hat signal. Furthermore, there is a price to pay for
stability because a system of simultaneous linear equations needs to be solved at each time
step if the operatorL uses several neighbors of the local grid point i.

To avoid solving simultaneous equations, alternative methods must be sought for time
differencing. Let us explore the leapfrog scheme on the finite-volume approach. Time inte-
gration of (6.12) from tn−1 to tn+1 yields

c̄
n+1
i

= c̄
n−1
i

− 2
∆t

∆x

(

q̂i+1/2 − q̂i−1/2

)

, (6.19)

where q̂i−1/2 is the time-average advective flux uc across the cell interfaces between cells i−1

and i during the time interval from tn−1 to tn+1. Using centered operators, this flux can be
estimated as

q̂i−1/2 =
1

2∆t

∫
t
n+1

t
n−1

uc|
i−1/2

dt → q̃i−1/2 = u

(
c̃n

i
+ c̃n

i−1

2

)

, (6.20)
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• A general two-points scheme (with 0 ≤ α ≤ 1):

ũ
n+1

= ũ
n

+ ∆t
[

(1− α)Q
n

+ αQ
n+1
]

. (2.47)
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Figure 2-12 Time integration of the source term Q between tn and tn+1: (a) exact integration, (b)
explicit scheme, (c) implicit scheme, and (d) semi-implicit, trapezoidal scheme.

Note that these schemes may be interpreted either as finite-difference approximations of
the time derivative or finite-difference approximations of the time integration of the source
term. Indeed,

u(t
n+1

) = u(t
n
) +

∫
t
n+1

t
n

Q dt, (2.48)

and the various schemes can be viewed as different ways of approximating the integral, as
depicted in Figure 2-12. All discretization schemes based on the exclusive use of Qn and
Qn+1 to evaluate the integral between tn and tn+1, which are called two-point methods, are
inevitably first-order methods, except the semi-implicit (or trapezoidal) scheme, which is of
second order. Second order is thus the highest order achievable with a two-point method. To
achieve an order higher than two, denser sampling of theQ term must be used to approximate
the time integration.

Before considering this, however, a serious handicap should be noted: The source termQ

depends on the unknown variable ũ, and we face the problem of not being able to calculate
Qn+1 before we know ũn+1, which is to be calculated from the value of Qn+1. There is a
vicious circle here! In the original case of inertial oscillations, the circular dependence was
overcome by an algebraic manipulation of the equations prior to solution (gathering all n + 1

terms on the left), but when the source term is nonlinear, as is often the case, such preliminary
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depends on the unknown variable ũ, and we face the problem of not being able to calculate
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Figure 2-11 Representation (called a hodograph) of the numerical solution (ũ, ṽ) (2.32a)–(2.32b) of
the explicit discretization of the inertial oscillation (α = 0), the implicit version (α = 1 ) and the
semi-implicit scheme (α = 1/2 ). The hodograph on the left was obtained with f∆t = 0.05 and the
one on the right panel with f∆t = 0.005 . The inertial oscillation (Figure 2-4) is clearly visible, but
the explicit scheme induces spiralling out and the implicit scheme spiralling in. When the time step
is reduced (moving from left panel to right panel), the solution approaches the exact solution. In both
cases, 10 inertial periods were simulated.

2.8 Predictor-corrector methods
Up to now, we have illustrated numerical discretizations on the linear equations describing
inertial oscillations. The methods can be easily generalized to equations with a nonlinear
source term Q in the equation governing the variable u, as

du

dt
= Q(t, u). (2.43)

For simplicity, we consider here a scalar variable u, but extension to a state vector x, such as
x = (u, v), is straightforward.

The previous methods can be recapitulated as follows:

• The explicit Euler method (forward scheme):

ũ
n+1

= ũ
n

+ ∆t Q
n (2.44)

• The implicit Euler method (backward scheme):

ũ
n+1

= ũ
n

+ ∆t Q
n+1 (2.45)

• The semi-implicit Euler scheme (trapezoidal scheme):

ũ
n+1

= ũ
n

+
∆t

2

(

Q
n

+ Q
n+1
)

(2.46)



An example of time-discretization 
Leapfrog
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which is the basis for the finite-volume technique, as in (3.33). To close the system, we need
to relate the local fluxes q to the cell-average concentrations c̄. To do so we must introduce
an approximation, because we do not know the actual value of c at the interfaces between
cells, but only the average value in the cell on each side of it. It appears reasonable to use the
following, consistent, numerical interpolation for the flux:

q̃i−1/2 = u

(
c̄i + c̄i−1

2

)

, (6.13)

which is tantamount to assuming that the local tracer concentration at the interface is equal
to the mean of the surrounding cell averages. Before proceeding with time discretization, we
can show that this centered approximation conserves not only the total amount of substance
but also its variance,

∑

i
c̄i and

∑

i
(c̄i)

2, respectively. Substitution of the flux approximation
into (6.12) leads to the following semi-discrete equation for cell-averaged concentrations:

dc̄i

dt
= − u

c̄i+1 − c̄i−1

2∆x
. (6.14)

Sum over index i leads to cancellation of terms by pairs on the right, leaving only the first
and last c̄ values. Then, multiplication of the same equation by ci followed by the sum over
the domain provides the time-evolution equation of the discretized variance:

d

dt

(

∑

i

(c̄i)
2

)

= −
u

∆x

∑

i

c̄ic̄i+1 +
u

∆x

∑

i

c̄ic̄i−1,

where the sum covers all grid cells. By shifting the index of the last term from i to i + 1 ,
we note again cancellation of terms by pairs, leaving only contributions from the first and
last grid points. Thus, except for possible contributions from the boundaries, the numerical
scheme conserves both total amount and variance as the original equation does.

However, the conservation of global variance only holds for the semi-discrete equations.
When time discretization is introduced as it must eventually be, conservation properties are
often lost. In the literature it is not always clearly stated whether conservation properties hold
for the semi-discrete or fully-discretized equations. The distinction, however, is important:
The centered-space differencing conserves the variance of the semi-discrete solution, but a
simple explicit time discretization renders the scheme unconditionnaly unstable and certainly
does not conserve the variance. On the contrary, the latter quantity rapidly increases. Only a
scheme that is both stable and consistent leads in the limit of vanishing time step to a solution
that satisfies (6.12) and ensures conservation of the variance.
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We might wonder why place emphasis on such conservation properties of semi-discrete
equations, since by the time the algorithm is keyed into the computer it will always rely
on fully-discretized numerical approximations in both space and time. A reason to look at
semi-discrete conservation properties is that some special time discretizations maintain the
property in the fully-discretized case. We now show that in the case of variance conservation,
the trapezoidal time discretization does so. Consider the more general linear equation
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+L(c̃i) = 0, (6.15)

where L stands for a linear discretization operator applied to the discrete field c̃i. For our
centered advection, the operator isL(c̃i) = u(c̃i+1−c̃i−1)/(2∆x). Suppose that the operator
is designed to satisfy conservation of variance, which demands that at any moment t and for
any discrete field c̃i the following relation holds:
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c̃iL(c̃i) = 0, (6.16)

because only then does
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where the last equality follows from the linearity of operatorL. Multiplying this equation by
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The term on the right is zero by virtue of (6.16). Therefore, any spatial discretization scheme
that conserves variance continues to conserve variance if the trapezoidal scheme is used for
the time discretization. As an additional benefit, the resulting scheme is also unconditionally
stable. This does not mean, however, that the scheme is satisfactory, as Numerical Exercise
6-9 shows for the advection of the top-hat signal. Furthermore, there is a price to pay for
stability because a system of simultaneous linear equations needs to be solved at each time
step if the operatorL uses several neighbors of the local grid point i.

To avoid solving simultaneous equations, alternative methods must be sought for time
differencing. Let us explore the leapfrog scheme on the finite-volume approach. Time inte-
gration of (6.12) from tn−1 to tn+1 yields
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i
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)

, (6.19)

where q̂i−1/2 is the time-average advective flux uc across the cell interfaces between cells i−1

and i during the time interval from tn−1 to tn+1. Using centered operators, this flux can be
estimated as

q̂i−1/2 =
1

2∆t

∫
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t
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, (6.20)

from t-1 to t+1  (2 timesteps)
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We might wonder why place emphasis on such conservation properties of semi-discrete
equations, since by the time the algorithm is keyed into the computer it will always rely
on fully-discretized numerical approximations in both space and time. A reason to look at
semi-discrete conservation properties is that some special time discretizations maintain the
property in the fully-discretized case. We now show that in the case of variance conservation,
the trapezoidal time discretization does so. Consider the more general linear equation

dc̃i

dt
+L(c̃i) = 0, (6.15)

where L stands for a linear discretization operator applied to the discrete field c̃i. For our
centered advection, the operator isL(c̃i) = u(c̃i+1−c̃i−1)/(2∆x). Suppose that the operator
is designed to satisfy conservation of variance, which demands that at any moment t and for
any discrete field c̃i the following relation holds:

∑
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c̃iL(c̃i) = 0, (6.16)

because only then does
∑

i
c̃i dc̃i/dt vanish according to (6.15) and (6.16). The trapezoidal

time discretization applied to (6.15) leads to
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where the last equality follows from the linearity of operatorL. Multiplying this equation by
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the time discretization. As an additional benefit, the resulting scheme is also unconditionally
stable. This does not mean, however, that the scheme is satisfactory, as Numerical Exercise
6-9 shows for the advection of the top-hat signal. Furthermore, there is a price to pay for
stability because a system of simultaneous linear equations needs to be solved at each time
step if the operatorL uses several neighbors of the local grid point i.

To avoid solving simultaneous equations, alternative methods must be sought for time
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where q̂i−1/2 is the time-average advective flux uc across the cell interfaces between cells i−1

and i during the time interval from tn−1 to tn+1. Using centered operators, this flux can be
estimated as
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so that the ultimate scheme is:
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where the coefficient C is defined as

C =
u∆t

∆x
. (6.22)

The same discretization could have been obtained by straightforward finite differencing of
(6.10).

The parameter C is a dimensionless ratio central to the numerical discretization of ad-
vective problems, called the Courant number or CFL parameter ( Courant et al., 1928). It
compares the displacement u∆t made by the fluid during one time step to the grid size ∆x.
More generally, the Courant number for a process involving a propagation speed (such as a
wave speed) is defined as the ratio of the distance of propagation during one time step to the
grid spacing.

To use (6.21), two initial conditions are needed, one of which is physical and the other
artificial, The latter must be consistent with the former. As usual, an explicit Euler step may
be used to start from the single initial condition c̃0

i
:
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1
i

= c̃
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Figure 6-4 The characteristic line x−
ut = a propagates information from
the initial condition or boundary con-
dition into the domain. If the bound-
ary is located at x = 0 and the ini-
tial condition given at t = 0, the line
x = ut divides the space-time frame
into two distinct regions: For x ≤ ut
the boundary condition defines the so-
lution whereas for x ≥ ut the initial
condition defines the solution.

In considering boundary conditions, we first observe that the exact solution of (6.10)
obeys the simple law

c(x− ut) = constant. (6.24)

By virtue of this property, a specified value of c somewhere along the line x − ut = a,
called a characteristic, determines the value of c everywhere along that line. It is then easily

average flux between time interval

solve equation to obtain

Courant number or CFL parameter
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situation is highly advective and the small diffusion term is not dropped. In that case, because
the order of the equation is not reduced, a boundary condition is enforced at the downstream
end, and a locally high gradient of concentration may occur.

To see this, consider the one-dimensional, steady situation with no source and sink, with
constant velocity and diffusivity in the x–direction. The equation is

u
dc

dx
= A

d2c

dx2
, (6.8)

and its most general solution is

c(x) = C0 + C1e
ux/A

. (6.9)

For u > 0, the downstream end is to the right of the domain, and the solution increases
exponentially towards the right boundary. Rather, it could be said that the solution decays
away from this boundary as x decreases away from it. In other words, a boundary layer
exists at the donwstream end. The e-folding length of this boundary layer is A/u, and it
can be very short in a highly advective situation (large u and small A). Put another way,
the Peclet number is the ratio of the domain length to this boundary-layer thickness, and the
larger the Peclet number, the smaller the fraction of the domain occupied by the boundary
layer. Why do we need to worry about this? Because in a numerical model it may happen
that the boundary-layer thickness falls below the grid size. It is therefore important to check
the Peclet number in relation to the spatial resolution. Should the ratio of the grid size to the
length scale of the system be comparable to, or larger than, the inverse of the Peclet number,
diffusion must be neglected in that direction, or, if it must be retained for some reason, special
care must be taken at the downstream boundary.

6.4 Centered and upwind advection schemes
In GFD, advection is generally dominant compared to diffusion, and we therefore begin with
the case of pure advection of a tracer concentration c(x, t) along the x–direction. The aim is
to solve numerically the following equation:

∂c

∂t
+ u

∂c

∂x
= 0. (6.10)

For simplicity, we further take the velocity u as constant and positive so that advection carries
c in the positive x–direction. The exact solution of this equation is

c(x, t) = c0(x − ut), (6.11)

where c0(x) is the initial concentration distribution (at t = 0).
A spatial integration from xi−1/2 to xi+1/2 across a grid cell (Figure 6-3) leads to the

following budget

dc̄i

dt
+
qi+1/2 − qi−1/2

∆x
= 0, qi−1/2 = uc|

i−1/2
, (6.12)
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If u>0 and constant
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so that the ultimate scheme is:

c̃
n+1
i

= c̃
n−1
i
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(

c̃
n

i+1 − c̃
n

i−1

)

, (6.21)

where the coefficient C is defined as

C =
u∆t

∆x
. (6.22)

The same discretization could have been obtained by straightforward finite differencing of
(6.10).

The parameter C is a dimensionless ratio central to the numerical discretization of ad-
vective problems, called the Courant number or CFL parameter ( Courant et al., 1928). It
compares the displacement u∆t made by the fluid during one time step to the grid size ∆x.
More generally, the Courant number for a process involving a propagation speed (such as a
wave speed) is defined as the ratio of the distance of propagation during one time step to the
grid spacing.

To use (6.21), two initial conditions are needed, one of which is physical and the other
artificial, The latter must be consistent with the former. As usual, an explicit Euler step may
be used to start from the single initial condition c̃0

i
:
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Figure 6-4 The characteristic line x−
ut = a propagates information from
the initial condition or boundary con-
dition into the domain. If the bound-
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into two distinct regions: For x ≤ ut
the boundary condition defines the so-
lution whereas for x ≥ ut the initial
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In considering boundary conditions, we first observe that the exact solution of (6.10)
obeys the simple law

c(x− ut) = constant. (6.24)

By virtue of this property, a specified value of c somewhere along the line x − ut = a,
called a characteristic, determines the value of c everywhere along that line. It is then easily
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In considering boundary conditions, we first observe that the exact solution of (6.10)
obeys the simple law

c(x− ut) = constant. (6.24)

By virtue of this property, a specified value of c somewhere along the line x − ut = a,
called a characteristic, determines the value of c everywhere along that line. It is then easily
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Figure 6-8 Upwind scheme with C =
0.5 applied to the advection of a “top-
hat” signal after 100 times steps. Ide-
ally the signal should be translated
without change in shape by 50 grid
points, but the solution is characterized
by a certain diffusion and a reduction in
gradient.
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, (6.37)

and the scheme is stable because the norm of the solution does not increase in time. Al-
though it is not related to a physical energy, the method derives its the name from its reliance
on a quadratic form that bears resemblance with kinetic energy. Methods that prove that a
quadratic form is conserved or bounded over time are similar to energy-budget methods used
to prove that the energy of a physical system is conserved.

The energymethod provides only a sufficient stability condition because the upper bounds
used in the demonstration do not need to be reached. But, since in the present case the
sufficient stability condition was found to be identical to the necessary CFL condition, the
condition0≤ C ≤ 1is both necessary and sufficient to guarantee the stability of the upwind
scheme.

Testing the upwind scheme on the “top-hat” problem (Figure 6-8), we observe that, unlike
leapfrog, the scheme does not create newminima or maxima, but somehow diffuses the signal
by reducing the gradients. The fact that the scheme is monotonic is readily understood by
examining (6.33): The new value at point i is a linear interpolation of previous values found
at i and i−1, so that no new value can ever fall outside the range of these previous values as
long as the condition0≤ C ≤ 1is satisfied.

The diffusive behavior can be explained by analyzing the modified equation associated
with (6.33). A Taylor expansion of the discrete solution around point (i, n) in (6.33) provides
the equation that the numerical scheme actually solves:

∂c̃
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+

∆t

2

∂2c̃

∂t2
+ O

(

∆t
2
)

+ u

(
∂c̃

∂x
−

∆x

2

∂2c̃

∂x2
+ O

(

∆x
2
)
)

= 0. (6.38)

The scheme is only of first order as can be expected from the use of a one-sided finite
difference. To give a physical interpretation to the equation, the second time derivative should
be replaced by a spatial derivative. Taking the derivative of the modified equationwith respect

time = 100

space

time=0  

time

no need of BC at this boundary, 
however numerical scheme needs one 
(artificial boundary condition)
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The same discretization could have been obtained by straightforward finite differencing of
(6.10).

The parameter C is a dimensionless ratio central to the numerical discretization of ad-
vective problems, called the Courant number or CFL parameter ( Courant et al., 1928). It
compares the displacement u∆t made by the fluid during one time step to the grid size ∆x.
More generally, the Courant number for a process involving a propagation speed (such as a
wave speed) is defined as the ratio of the distance of propagation during one time step to the
grid spacing.

To use (6.21), two initial conditions are needed, one of which is physical and the other
artificial, The latter must be consistent with the former. As usual, an explicit Euler step may
be used to start from the single initial condition c̃0
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In considering boundary conditions, we first observe that the exact solution of (6.10)
obeys the simple law

c(x− ut) = constant. (6.24)

By virtue of this property, a specified value of c somewhere along the line x − ut = a,
called a characteristic, determines the value of c everywhere along that line. It is then easily
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seen (Figure 6-4) that, in order to obtain a uniquely defined solution within the domain, a
boundary condition must be provided at the upstream boundary but no boundary condition is
required at the outflow boundary. The centered space differencing, however, needs a value of
c̃ given at each boundary. When discussing artificial boundary conditions (Section 4.7), we
argued that these are acceptable as long as they are consistent with the mathematically correct
boundary condition. But then, what requirement should the articifial boundary condition at
the outflow obey with since there is no physical boundary condition for it to be consistent
with? In practice a one-sided space differencing is used at the outflow for the last calculation
point i = m, so that its value is consistent with the local evolution equation:

c̃
n+1
m

= c̃
n−1
m
− 2C

(

c̃
n

m
− c̃

n

m−1

)

. (6.25)

This provides the necessary value at the last grid cell.
For the inflow condition, the physical boundary condition is imposed, and algorithm

(6.21) can be used starting from n = 1 and marching in time over all points i = 2, ..., m− 1.
Numerically we thus have sufficient information to calculate a solution that will be second-
order accurate in both space and time, except near the initial condition and at the outflow
boundary. In order to avoid any bad surprise when implementing the method, a stability
analysis is advised.

For convenience, we use the Von Neumann method written in Fourier-mode formalism
(5.31)

c̃
n

i
= A e

i (kx i∆x − ω̃ n∆t)
, (6.26)

where the frequency ω̃ may be complex. Substitution in the difference equation (6.21) pro-
vides the numerical dispersion relation

sin(ω̃∆t) = C sin(kx∆x). (6.27)

If |C| > 1 this equation admits complex solutions ω̃ = ω̃r + i ω̃i for the 4∆x wave with
ω̃r∆t = π/2 and ω̃i such that

sin(ω̃r∆t + i ω̃i∆t) = cosh(ω̃i∆t) = C, (6.28)

which admits two real solutions ω̃i of opposite signs. One of the two solutions, therefore,
corresponds to a growing amplitude, and the scheme is unstable.

For |C| ≤ 1, dispersion relation (6.27) has two real solutions ω̃, and the scheme is stable.
Therefore, numerical stability requires the condition |C| ≤ 1.

In the stable case, the numerical frequency ω̃ may be compared to the exact value written
in terms of discrete parameters

ω = u kx → ω∆t = C kx∆x. (6.29)

Obviously, for kx∆x→ 0 and∆t→ 0 the numerical relation (6.27) coincides with the exact
relation (6.29). However, when ω̃ is solution of (6.27) so is also π/∆t − ω̃. The numerical
solution thus consists of the superposition of the physical mode exp[i (kx i∆x− ω̃ n∆t)] and
an numerical mode that can be expressed as

c̃
n

i
= A e

i (kx i∆x + ω̃ n∆t)
e
i nπ (6.30)

m=right boundary



Stability analysis (see book for details on the Newman method)
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Figure 6-6 Leapfrog scheme applied
to the advection of a “top-hat” signal
with C = 0.5 for 100 times steps.
The exact solution is a mere translation
from the initial position (dashed curve
on the left) by 50 grid points down-
stream (dash-dotted curve on the right).
The numerical method generates a so-
lution that is roughly similar to the ex-
act solution, with the solution varying
around the correct value.

is made to determine a value from an irrelevant set of other values. Numerical instability is
the symptom of this unsound approach. It is therefore necessary that the characteristic line
passing through (i, n) be included in the numerical domain of dependence.

Except for the undesirable spurious mode, the leapfrog scheme has desirable features,
because it is stable for |C| ≤ 1 , conserves variance for sufficiently small time steps, and
leads to the correct dispersion relation for well-resolved spatial scales. But, is it sufficient to
ensure a well-behaved solution? A standard test for advection schemes is the translation of a
“top-hat” signal. The use of (6.21) leads in this case to the result shown in Figure 6-6, which
is somewhat disappointing. The odd behavior can be explained: In terms of Fourier modes,
the solution consists of a series of sine/cosine signals of different wavelength, each of which
by virtue of the numerical dispersion relation (6.27) travels at its own speed, thus unraveling
the signal over time. This also explains the unphysical appearance of both negative values
and values in excess of the initial maximum. The scheme does not possess the monotonicity
property but creates new extrema.

The cause of the poor performance of the leapfrog scheme is evident: The actual integra-
tion should be performed using upstream information exclusively whereas the scheme uses
a central average that disregards the origin of the information. In other words, it ignores the
physical bias of advection.

To remedy the situation, we now try to take into account the directional information of
advection and introduce the so-called upwind or donor cell scheme. A simple Euler scheme
over a single time step ∆t is chosen, and fluxes are integrated over this time interval. The
essence of this scheme is to calculate the inflow based solely on the average value across
the grid cell from where the flow arrives (the donor cell). For positive velocity and a time
integration from tn to tn+1, we obtain

c̄
n+1
i

= c̄
n

i
−

∆t

∆x

(

q̂i+1/2 − q̂i−1/2

)

(6.31)

with
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with? In practice a one-sided space differencing is used at the outflow for the last calculation
point i = m, so that its value is consistent with the local evolution equation:

c̃
n+1
m

= c̃
n−1
m
− 2C

(

c̃
n

m
− c̃

n

m−1

)

. (6.25)

This provides the necessary value at the last grid cell.
For the inflow condition, the physical boundary condition is imposed, and algorithm

(6.21) can be used starting from n = 1 and marching in time over all points i = 2, ..., m− 1.
Numerically we thus have sufficient information to calculate a solution that will be second-
order accurate in both space and time, except near the initial condition and at the outflow
boundary. In order to avoid any bad surprise when implementing the method, a stability
analysis is advised.

For convenience, we use the Von Neumann method written in Fourier-mode formalism
(5.31)

c̃
n

i
= A e

i (kx i∆x − ω̃ n∆t)
, (6.26)

where the frequency ω̃ may be complex. Substitution in the difference equation (6.21) pro-
vides the numerical dispersion relation

sin(ω̃∆t) = C sin(kx∆x). (6.27)

If |C| > 1 this equation admits complex solutions ω̃ = ω̃r + i ω̃i for the 4∆x wave with
ω̃r∆t = π/2 and ω̃i such that

sin(ω̃r∆t + i ω̃i∆t) = cosh(ω̃i∆t) = C, (6.28)

which admits two real solutions ω̃i of opposite signs. One of the two solutions, therefore,
corresponds to a growing amplitude, and the scheme is unstable.

For |C| ≤ 1, dispersion relation (6.27) has two real solutions ω̃, and the scheme is stable.
Therefore, numerical stability requires the condition |C| ≤ 1.

In the stable case, the numerical frequency ω̃ may be compared to the exact value written
in terms of discrete parameters

ω = u kx → ω∆t = C kx∆x. (6.29)

Obviously, for kx∆x→ 0 and∆t→ 0 the numerical relation (6.27) coincides with the exact
relation (6.29). However, when ω̃ is solution of (6.27) so is also π/∆t − ω̃. The numerical
solution thus consists of the superposition of the physical mode exp[i (kx i∆x− ω̃ n∆t)] and
an numerical mode that can be expressed as

c̃
n

i
= A e

i (kx i∆x + ω̃ n∆t)
e
i nπ (6.30)
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so that the ultimate scheme is:
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n+1
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= c̃
n−1
i
− C

(
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n

i+1 − c̃
n

i−1

)

, (6.21)

where the coefficient C is defined as

C =
u∆t

∆x
. (6.22)

The same discretization could have been obtained by straightforward finite differencing of
(6.10).

The parameter C is a dimensionless ratio central to the numerical discretization of ad-
vective problems, called the Courant number or CFL parameter ( Courant et al., 1928). It
compares the displacement u∆t made by the fluid during one time step to the grid size ∆x.
More generally, the Courant number for a process involving a propagation speed (such as a
wave speed) is defined as the ratio of the distance of propagation during one time step to the
grid spacing.

To use (6.21), two initial conditions are needed, one of which is physical and the other
artificial, The latter must be consistent with the former. As usual, an explicit Euler step may
be used to start from the single initial condition c̃0

i
:

c̃
1
i

= c̃
0
i
−

C

2

(

c̃
0
i+1 − c̃

0
i−1

)

. (6.23)
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Figure 6-4 The characteristic line x−
ut = a propagates information from
the initial condition or boundary con-
dition into the domain. If the bound-
ary is located at x = 0 and the ini-
tial condition given at t = 0, the line
x = ut divides the space-time frame
into two distinct regions: For x ≤ ut
the boundary condition defines the so-
lution whereas for x ≥ ut the initial
condition defines the solution.

In considering boundary conditions, we first observe that the exact solution of (6.10)
obeys the simple law

c(x− ut) = constant. (6.24)

By virtue of this property, a specified value of c somewhere along the line x − ut = a,
called a characteristic, determines the value of c everywhere along that line. It is then easily
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which, by virtue of einπ = (−1)n, flip-flops in time, irrespectively of how small the time
step is or how well the spatial scale is resolved. This second component of the numerical
solution, called spurious mode or computational mode, is traveling upstream, as indicated
by the change of sign in front of the frequency. For the linear case discussed here, this
spurious mode can be controlled by careful initialization (see Numerical Exercise 6-2), but
for nonlinear equations, the mode may still be generated despite careful initialization and
boundary conditions. In this case, it might be necessary to use time-filtering (see Section
10.6) to eliminate unwanted signals even if the spurious mode is stable for |C| ≤ 1.
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Figure 6-5 Numerical domain of dependence of the leapfrog scheme (in gray) covered by the points
(circled dots) that influence the calculation at point i, n. This network of points is constructed re-
cursively by identifying the grid points involved in prior calculations. The physical solution is only
influenced by values along the characteristic. If the characteristic falls into the numerical domain of
dependence (one of the solid lines for example), this value can be captured by the numerical grid. On
the contrary, when the physical characteristic is not included in the numerical domain of dependence
(dashed line for example), the numerical scheme uses only information that is physically unrelated to
the advection process, and the scheme is unstable. Also note that for the leapfrog scheme the domain
of dependence defines a checkerboard pattern and that the grid in (x, t) space includes two numerically
independent sets of values (circled and non-circled dots).

The leapfrog scheme is thus conditionally stable. The stability condition |C| ≤ 1 was
given a clear physical interpretation by Courant, Friedrichs and Lewy in their seminal 1928
paper. It is based on the fact that algorithm (6.21) defines a domain of dependence: Calcu-
lation of the value at point i and moment n (at the top of the gray pyramid in Figure 6-5)
implicates neighbor points i ± 1 at time n and the cell value i at time n − 1. Those values
in turn depend on their two neighboring and past values, so that a network of points can be
constructed that influence the value at grid point i and moment n. This network is the numer-
ical domain of dependence. Physically, however, the solution at point i and time n depends
only on the value along the characteristic x − ut = xi − utn according to (6.24). It is clear
that, if this line does not fall into the domain of dependence, there is trouble, for an attempt
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that, if this line does not fall into the domain of dependence, there is trouble, for an attempt
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seen (Figure 6-4) that, in order to obtain a uniquely defined solution within the domain, a
boundary condition must be provided at the upstream boundary but no boundary condition is
required at the outflow boundary. The centered space differencing, however, needs a value of
c̃ given at each boundary. When discussing artificial boundary conditions (Section 4.7), we
argued that these are acceptable as long as they are consistent with the mathematically correct
boundary condition. But then, what requirement should the articifial boundary condition at
the outflow obey with since there is no physical boundary condition for it to be consistent
with? In practice a one-sided space differencing is used at the outflow for the last calculation
point i = m, so that its value is consistent with the local evolution equation:

c̃
n+1
m

= c̃
n−1
m
− 2C

(

c̃
n

m
− c̃

n

m−1

)

. (6.25)

This provides the necessary value at the last grid cell.
For the inflow condition, the physical boundary condition is imposed, and algorithm

(6.21) can be used starting from n = 1 and marching in time over all points i = 2, ..., m− 1.
Numerically we thus have sufficient information to calculate a solution that will be second-
order accurate in both space and time, except near the initial condition and at the outflow
boundary. In order to avoid any bad surprise when implementing the method, a stability
analysis is advised.

For convenience, we use the Von Neumann method written in Fourier-mode formalism
(5.31)

c̃
n

i
= A e

i (kx i∆x − ω̃ n∆t)
, (6.26)

where the frequency ω̃ may be complex. Substitution in the difference equation (6.21) pro-
vides the numerical dispersion relation

sin(ω̃∆t) = C sin(kx∆x). (6.27)

If |C| > 1 this equation admits complex solutions ω̃ = ω̃r + i ω̃i for the 4∆x wave with
ω̃r∆t = π/2 and ω̃i such that

sin(ω̃r∆t + i ω̃i∆t) = cosh(ω̃i∆t) = C, (6.28)

which admits two real solutions ω̃i of opposite signs. One of the two solutions, therefore,
corresponds to a growing amplitude, and the scheme is unstable.

For |C| ≤ 1, dispersion relation (6.27) has two real solutions ω̃, and the scheme is stable.
Therefore, numerical stability requires the condition |C| ≤ 1.

In the stable case, the numerical frequency ω̃ may be compared to the exact value written
in terms of discrete parameters

ω = u kx → ω∆t = C kx∆x. (6.29)

Obviously, for kx∆x→ 0 and∆t→ 0 the numerical relation (6.27) coincides with the exact
relation (6.29). However, when ω̃ is solution of (6.27) so is also π/∆t − ω̃. The numerical
solution thus consists of the superposition of the physical mode exp[i (kx i∆x− ω̃ n∆t)] and
an numerical mode that can be expressed as

c̃
n

i
= A e

i (kx i∆x + ω̃ n∆t)
e
i nπ (6.30)

the scheme ignores the physical bias of 
advection (e.g. only upstream 
information should be used)

Conditionally stable
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Figure 6-6 Leapfrog scheme applied
to the advection of a “top-hat” signal
with C = 0.5 for 100 times steps.
The exact solution is a mere translation
from the initial position (dashed curve
on the left) by 50 grid points down-
stream (dash-dotted curve on the right).
The numerical method generates a so-
lution that is roughly similar to the ex-
act solution, with the solution varying
around the correct value.

is made to determine a value from an irrelevant set of other values. Numerical instability is
the symptom of this unsound approach. It is therefore necessary that the characteristic line
passing through (i, n) be included in the numerical domain of dependence.

Except for the undesirable spurious mode, the leapfrog scheme has desirable features,
because it is stable for |C| ≤ 1 , conserves variance for sufficiently small time steps, and
leads to the correct dispersion relation for well-resolved spatial scales. But, is it sufficient to
ensure a well-behaved solution? A standard test for advection schemes is the translation of a
“top-hat” signal. The use of (6.21) leads in this case to the result shown in Figure 6-6, which
is somewhat disappointing. The odd behavior can be explained: In terms of Fourier modes,
the solution consists of a series of sine/cosine signals of different wavelength, each of which
by virtue of the numerical dispersion relation (6.27) travels at its own speed, thus unraveling
the signal over time. This also explains the unphysical appearance of both negative values
and values in excess of the initial maximum. The scheme does not possess the monotonicity
property but creates new extrema.

The cause of the poor performance of the leapfrog scheme is evident: The actual integra-
tion should be performed using upstream information exclusively whereas the scheme uses
a central average that disregards the origin of the information. In other words, it ignores the
physical bias of advection.

To remedy the situation, we now try to take into account the directional information of
advection and introduce the so-called upwind or donor cell scheme. A simple Euler scheme
over a single time step ∆t is chosen, and fluxes are integrated over this time interval. The
essence of this scheme is to calculate the inflow based solely on the average value across
the grid cell from where the flow arrives (the donor cell). For positive velocity and a time
integration from tn to tn+1, we obtain

c̄
n+1
i

= c̄
n

i
−

∆t

∆x

(

q̂i+1/2 − q̂i−1/2

)

(6.31)

with
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Figure 6-3 One-dimensional finite-
volume approach with fluxes at the
interfaces between grid cells for a
straightforward budget calculation.

which is the basis for the finite-volume technique, as in (3.33). To close the system, we need
to relate the local fluxes q to the cell-average concentrations c̄. To do so we must introduce
an approximation, because we do not know the actual value of c at the interfaces between
cells, but only the average value in the cell on each side of it. It appears reasonable to use the
following, consistent, numerical interpolation for the flux:

q̃i−1/2 = u

(
c̄i + c̄i−1

2

)

, (6.13)

which is tantamount to assuming that the local tracer concentration at the interface is equal
to the mean of the surrounding cell averages. Before proceeding with time discretization, we
can show that this centered approximation conserves not only the total amount of substance
but also its variance,

∑

i
c̄i and

∑

i
(c̄i)

2, respectively. Substitution of the flux approximation
into (6.12) leads to the following semi-discrete equation for cell-averaged concentrations:

dc̄i

dt
= − u

c̄i+1 − c̄i−1

2∆x
. (6.14)

Sum over index i leads to cancellation of terms by pairs on the right, leaving only the first
and last c̄ values. Then, multiplication of the same equation by ci followed by the sum over
the domain provides the time-evolution equation of the discretized variance:

d

dt

(

∑

i

(c̄i)
2

)

= −
u

∆x

∑

i

c̄ic̄i+1 +
u

∆x

∑

i

c̄ic̄i−1,

where the sum covers all grid cells. By shifting the index of the last term from i to i + 1 ,
we note again cancellation of terms by pairs, leaving only contributions from the first and
last grid points. Thus, except for possible contributions from the boundaries, the numerical
scheme conserves both total amount and variance as the original equation does.

However, the conservation of global variance only holds for the semi-discrete equations.
When time discretization is introduced as it must eventually be, conservation properties are
often lost. In the literature it is not always clearly stated whether conservation properties hold
for the semi-discrete or fully-discretized equations. The distinction, however, is important:
The centered-space differencing conserves the variance of the semi-discrete solution, but a
simple explicit time discretization renders the scheme unconditionnaly unstable and certainly
does not conserve the variance. On the contrary, the latter quantity rapidly increases. Only a
scheme that is both stable and consistent leads in the limit of vanishing time step to a solution
that satisfies (6.12) and ensures conservation of the variance.
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i−1, (6.32)

so that the scheme is

c̃
n+1
i
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n

i
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c̃
n

i
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n

i−1

)

. (6.33)

Interestingly enough, the scheme can be used without need of artificial boundary condi-
tions or special initialization, as we can see from algorithm (6.33) or the numerical domain
of dependence (Figure 6-7). The CFL condition0≤ C ≤ 1provides the necessary condition
for stability.
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Figure 6-7 Domain of dependence of
the upwind scheme. If the characteris-
tic (dashed line) lies outside the numer-
ical domain of dependence, unphysical
behavior will be manifested as numeri-
cal instability. The necessary CFL sta-
bility condition therefore requires 0 ≤
C ≤ 1 so that the characteristic lies
within the numerical domain of depen-
dence (cases of solid lines). One ini-
tial condition and one upstream bound-
ary condition are sufficient to deter-
mine the numerical solution.

The stability of the scheme could be analyzed with the Von Neumann method, but the
simplicity of the scheme permits another approach, the so-called energy method. The energy
method considers the sum of squares of c̃ and determines whether it remains bounded over
time, providing a sufficient condition for stability. We start with (6.33), square it and sum
over the domain:
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2
. (6.34)

The first and last terms on the right can be grouped by shifting the index i in the last sum and
invoking cyclic boundary conditions so that
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i−1. (6.35)

We can find an upper bound for the last term by using the following inequality:

0≤
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i
c̃
n

i−1, (6.36)

which can be proved by using again the cyclic condition. If C(1− C) > 0the last term in
(6.35) may be replaced by the upper bound of (6.36) so that

For a positive velocity (e.g. downstream)
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Figure 6-6 Leapfrog scheme applied
to the advection of a “top-hat” signal
with C = 0.5 for 100 times steps.
The exact solution is a mere translation
from the initial position (dashed curve
on the left) by 50 grid points down-
stream (dash-dotted curve on the right).
The numerical method generates a so-
lution that is roughly similar to the ex-
act solution, with the solution varying
around the correct value.

is made to determine a value from an irrelevant set of other values. Numerical instability is
the symptom of this unsound approach. It is therefore necessary that the characteristic line
passing through (i, n) be included in the numerical domain of dependence.

Except for the undesirable spurious mode, the leapfrog scheme has desirable features,
because it is stable for |C| ≤ 1 , conserves variance for sufficiently small time steps, and
leads to the correct dispersion relation for well-resolved spatial scales. But, is it sufficient to
ensure a well-behaved solution? A standard test for advection schemes is the translation of a
“top-hat” signal. The use of (6.21) leads in this case to the result shown in Figure 6-6, which
is somewhat disappointing. The odd behavior can be explained: In terms of Fourier modes,
the solution consists of a series of sine/cosine signals of different wavelength, each of which
by virtue of the numerical dispersion relation (6.27) travels at its own speed, thus unraveling
the signal over time. This also explains the unphysical appearance of both negative values
and values in excess of the initial maximum. The scheme does not possess the monotonicity
property but creates new extrema.

The cause of the poor performance of the leapfrog scheme is evident: The actual integra-
tion should be performed using upstream information exclusively whereas the scheme uses
a central average that disregards the origin of the information. In other words, it ignores the
physical bias of advection.

To remedy the situation, we now try to take into account the directional information of
advection and introduce the so-called upwind or donor cell scheme. A simple Euler scheme
over a single time step ∆t is chosen, and fluxes are integrated over this time interval. The
essence of this scheme is to calculate the inflow based solely on the average value across
the grid cell from where the flow arrives (the donor cell). For positive velocity and a time
integration from tn to tn+1, we obtain

c̄
n+1
i

= c̄
n

i
−

∆t

∆x

(

q̂i+1/2 − q̂i−1/2

)

(6.31)

with
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so that the scheme is
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Interestingly enough, the scheme can be used without need of artificial boundary condi-
tions or special initialization, as we can see from algorithm (6.33) or the numerical domain
of dependence (Figure 6-7). The CFL condition0≤ C ≤ 1provides the necessary condition
for stability.
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dence (cases of solid lines). One ini-
tial condition and one upstream bound-
ary condition are sufficient to deter-
mine the numerical solution.

The stability of the scheme could be analyzed with the Von Neumann method, but the
simplicity of the scheme permits another approach, the so-called energy method. The energy
method considers the sum of squares of c̃ and determines whether it remains bounded over
time, providing a sufficient condition for stability. We start with (6.33), square it and sum
over the domain:
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The first and last terms on the right can be grouped by shifting the index i in the last sum and
invoking cyclic boundary conditions so that
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We can find an upper bound for the last term by using the following inequality:
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which can be proved by using again the cyclic condition. If C(1− C) > 0the last term in
(6.35) may be replaced by the upper bound of (6.36) so that

6.4. ADVECTION SCHEMES 157

which, by virtue of einπ = (−1)n, flip-flops in time, irrespectively of how small the time
step is or how well the spatial scale is resolved. This second component of the numerical
solution, called spurious mode or computational mode, is traveling upstream, as indicated
by the change of sign in front of the frequency. For the linear case discussed here, this
spurious mode can be controlled by careful initialization (see Numerical Exercise 6-2), but
for nonlinear equations, the mode may still be generated despite careful initialization and
boundary conditions. In this case, it might be necessary to use time-filtering (see Section
10.6) to eliminate unwanted signals even if the spurious mode is stable for |C| ≤ 1.
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Figure 6-5 Numerical domain of dependence of the leapfrog scheme (in gray) covered by the points
(circled dots) that influence the calculation at point i, n. This network of points is constructed re-
cursively by identifying the grid points involved in prior calculations. The physical solution is only
influenced by values along the characteristic. If the characteristic falls into the numerical domain of
dependence (one of the solid lines for example), this value can be captured by the numerical grid. On
the contrary, when the physical characteristic is not included in the numerical domain of dependence
(dashed line for example), the numerical scheme uses only information that is physically unrelated to
the advection process, and the scheme is unstable. Also note that for the leapfrog scheme the domain
of dependence defines a checkerboard pattern and that the grid in (x, t) space includes two numerically
independent sets of values (circled and non-circled dots).

The leapfrog scheme is thus conditionally stable. The stability condition |C| ≤ 1 was
given a clear physical interpretation by Courant, Friedrichs and Lewy in their seminal 1928
paper. It is based on the fact that algorithm (6.21) defines a domain of dependence: Calcu-
lation of the value at point i and moment n (at the top of the gray pyramid in Figure 6-5)
implicates neighbor points i ± 1 at time n and the cell value i at time n − 1. Those values
in turn depend on their two neighboring and past values, so that a network of points can be
constructed that influence the value at grid point i and moment n. This network is the numer-
ical domain of dependence. Physically, however, the solution at point i and time n depends
only on the value along the characteristic x − ut = xi − utn according to (6.24). It is clear
that, if this line does not fall into the domain of dependence, there is trouble, for an attempt
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Figure 6-8 Upwind scheme with C =
0.5 applied to the advection of a “top-
hat” signal after 100 times steps. Ide-
ally the signal should be translated
without change in shape by 50 grid
points, but the solution is characterized
by a certain diffusion and a reduction in
gradient.
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and the scheme is stable because the norm of the solution does not increase in time. Al-
though it is not related to a physical energy, the method derives its the name from its reliance
on a quadratic form that bears resemblance with kinetic energy. Methods that prove that a
quadratic form is conserved or bounded over time are similar to energy-budget methods used
to prove that the energy of a physical system is conserved.

The energymethod provides only a sufficient stability condition because the upper bounds
used in the demonstration do not need to be reached. But, since in the present case the
sufficient stability condition was found to be identical to the necessary CFL condition, the
condition0≤ C ≤ 1is both necessary and sufficient to guarantee the stability of the upwind
scheme.

Testing the upwind scheme on the “top-hat” problem (Figure 6-8), we observe that, unlike
leapfrog, the scheme does not create newminima or maxima, but somehow diffuses the signal
by reducing the gradients. The fact that the scheme is monotonic is readily understood by
examining (6.33): The new value at point i is a linear interpolation of previous values found
at i and i−1, so that no new value can ever fall outside the range of these previous values as
long as the condition0≤ C ≤ 1is satisfied.

The diffusive behavior can be explained by analyzing the modified equation associated
with (6.33). A Taylor expansion of the discrete solution around point (i, n) in (6.33) provides
the equation that the numerical scheme actually solves:
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∂2c̃

∂x2
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∆x
2
)
)

= 0. (6.38)

The scheme is only of first order as can be expected from the use of a one-sided finite
difference. To give a physical interpretation to the equation, the second time derivative should
be replaced by a spatial derivative. Taking the derivative of the modified equationwith respect

time

no need of BC at this boundary, 
upwind scheme only needs upstream BC 
(no artificial boundary condition)
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Figure 6-6 Leapfrog scheme applied
to the advection of a “top-hat” signal
with C = 0.5 for 100 times steps.
The exact solution is a mere translation
from the initial position (dashed curve
on the left) by 50 grid points down-
stream (dash-dotted curve on the right).
The numerical method generates a so-
lution that is roughly similar to the ex-
act solution, with the solution varying
around the correct value.

is made to determine a value from an irrelevant set of other values. Numerical instability is
the symptom of this unsound approach. It is therefore necessary that the characteristic line
passing through (i, n) be included in the numerical domain of dependence.

Except for the undesirable spurious mode, the leapfrog scheme has desirable features,
because it is stable for |C| ≤ 1 , conserves variance for sufficiently small time steps, and
leads to the correct dispersion relation for well-resolved spatial scales. But, is it sufficient to
ensure a well-behaved solution? A standard test for advection schemes is the translation of a
“top-hat” signal. The use of (6.21) leads in this case to the result shown in Figure 6-6, which
is somewhat disappointing. The odd behavior can be explained: In terms of Fourier modes,
the solution consists of a series of sine/cosine signals of different wavelength, each of which
by virtue of the numerical dispersion relation (6.27) travels at its own speed, thus unraveling
the signal over time. This also explains the unphysical appearance of both negative values
and values in excess of the initial maximum. The scheme does not possess the monotonicity
property but creates new extrema.

The cause of the poor performance of the leapfrog scheme is evident: The actual integra-
tion should be performed using upstream information exclusively whereas the scheme uses
a central average that disregards the origin of the information. In other words, it ignores the
physical bias of advection.

To remedy the situation, we now try to take into account the directional information of
advection and introduce the so-called upwind or donor cell scheme. A simple Euler scheme
over a single time step ∆t is chosen, and fluxes are integrated over this time interval. The
essence of this scheme is to calculate the inflow based solely on the average value across
the grid cell from where the flow arrives (the donor cell). For positive velocity and a time
integration from tn to tn+1, we obtain

c̄
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= c̄
n

i
−

∆t
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(

q̂i+1/2 − q̂i−1/2

)

(6.31)

with

no need of BC at this boundary, 
however numerical scheme needs one 
(artificial boundary condition)
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leapfrog upwind

this scheme diffuses signal
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Figure 6-8 Upwind scheme with C =
0.5 applied to the advection of a “top-
hat” signal after 100 times steps. Ide-
ally the signal should be translated
without change in shape by 50 grid
points, but the solution is characterized
by a certain diffusion and a reduction in
gradient.
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and the scheme is stable because the norm of the solution does not increase in time. Al-
though it is not related to a physical energy, the method derives its the name from its reliance
on a quadratic form that bears resemblance with kinetic energy. Methods that prove that a
quadratic form is conserved or bounded over time are similar to energy-budget methods used
to prove that the energy of a physical system is conserved.

The energymethod provides only a sufficient stability condition because the upper bounds
used in the demonstration do not need to be reached. But, since in the present case the
sufficient stability condition was found to be identical to the necessary CFL condition, the
condition0≤ C ≤ 1is both necessary and sufficient to guarantee the stability of the upwind
scheme.

Testing the upwind scheme on the “top-hat” problem (Figure 6-8), we observe that, unlike
leapfrog, the scheme does not create newminima or maxima, but somehow diffuses the signal
by reducing the gradients. The fact that the scheme is monotonic is readily understood by
examining (6.33): The new value at point i is a linear interpolation of previous values found
at i and i−1, so that no new value can ever fall outside the range of these previous values as
long as the condition0≤ C ≤ 1is satisfied.

The diffusive behavior can be explained by analyzing the modified equation associated
with (6.33). A Taylor expansion of the discrete solution around point (i, n) in (6.33) provides
the equation that the numerical scheme actually solves:
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The scheme is only of first order as can be expected from the use of a one-sided finite
difference. To give a physical interpretation to the equation, the second time derivative should
be replaced by a spatial derivative. Taking the derivative of the modified equationwith respect
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u

Understanding diffusion of the upwind scheme
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to t provides an equation for the second time derivative, which we would like to eliminate,
but it involves a cross derivative3. This cross derivative can be obtained by differentiating the
modified equation with respect to x. Some algebra then provides

∂2c̃

∂t2
= u

2 ∂
2c̃

∂x2
+ O

(

∆t, ∆x
2
)

,

which can finally be introduced into (6.38) to yield the following equation
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u∆x

2
(1− C)

∂2c̃

∂x2
+ O
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2
, ∆x

2
)

. (6.39)

This is the equation that the upwind scheme actually solves.
Up toO

(

∆t2, ∆x2
)

, therefore, the numerical scheme solves an advection-diffusion equa-
tion instead of the pure advection equation, with diffusivity equal to(1− C)u∆x/2. For ob-
vious reasons, this is called an artificial diffusion or numerical diffusion. The effect is readily
seen in Figure 6-8. To decide whether this level of artificial diffusion is acceptable or not, we
must compare its size to that of physical diffusion. For a diffusivity coefficient A, the ratio
of numerical to physical diffusion is (1− C)u∆x/(2A). Since it would be an aberration
to have numerical diffusion equal or exceed physical diffusion (recall the error analysis of
Section 4.8: Discretization errors should not be larger than modeling errors), the grid Peclet
number U∆x/A may not exceed a value ofO(1) for the upwind scheme to be valid.

When no physical diffusion is present, we must require that the numerical diffusion term
be small compared to the physical advection term, a condition that can be associated with
another grid Peclet number:

P̃ e = 2
UL

U∆x (1− C)
∼

L

∆x
≫ 1, (6.40)

whereL stands for the length scale of any solution component worth resolving. Even for well
resolved signals in GFD flows, the Peclet number associated with numerical diffusion is often
insufficiently large, and numerical diffusion is a problem that plagues the upwind scheme.

The observation that the scheme introduces artificial diffusion is interesting and annoy-
ing, and the question is now to identify its origin in order to reduce it. Compared to the
centered scheme, which is symmetric and of second order, the upwind scheme uses exclu-
sively information form the upstream side, the donor cell, and is only of first order. Numerical
diffusion must, therefore, be associated with the asymmetry in the flux calculation, and to re-
duce numerical diffusion we must somehow take into account values of c̃ on both sides of the
interface to calculate the flux and thereby seek a scheme that is second-order accurate.

This can be accomplished with the Lax-Wendroff scheme, which estimates the flux at the
cell interface not by assuming that the function is constant within the cell but varies linearly
across it:

3Note that using the original equations, the physical solution satisfies ∂2c/∂t2 = u2∂2c/∂x2, which is some-
times used as a shortcut to eliminate the second time derivative from the modified equation. This is, however,
incorrect because c̃ does not solve the original equation. In practice, this kind of shortcuts can lead to correct leading
truncation errors, but without being sure that no essential term is overlooked.
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whereL stands for the length scale of any solution component worth resolving. Even for well
resolved signals in GFD flows, the Peclet number associated with numerical diffusion is often
insufficiently large, and numerical diffusion is a problem that plagues the upwind scheme.

The observation that the scheme introduces artificial diffusion is interesting and annoy-
ing, and the question is now to identify its origin in order to reduce it. Compared to the
centered scheme, which is symmetric and of second order, the upwind scheme uses exclu-
sively information form the upstream side, the donor cell, and is only of first order. Numerical
diffusion must, therefore, be associated with the asymmetry in the flux calculation, and to re-
duce numerical diffusion we must somehow take into account values of c̃ on both sides of the
interface to calculate the flux and thereby seek a scheme that is second-order accurate.

This can be accomplished with the Lax-Wendroff scheme, which estimates the flux at the
cell interface not by assuming that the function is constant within the cell but varies linearly
across it:

3Note that using the original equations, the physical solution satisfies ∂2c/∂t2 = u2∂2c/∂x2, which is some-
times used as a shortcut to eliminate the second time derivative from the modified equation. This is, however,
incorrect because c̃ does not solve the original equation. In practice, this kind of shortcuts can lead to correct leading
truncation errors, but without being sure that no essential term is overlooked.

to eliminate second derivatives, take t and then x derivative 
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tion instead of the pure advection equation, with diffusivity equal to(1− C)u∆x/2. For ob-
vious reasons, this is called an artificial diffusion or numerical diffusion. The effect is readily
seen in Figure 6-8. To decide whether this level of artificial diffusion is acceptable or not, we
must compare its size to that of physical diffusion. For a diffusivity coefficient A, the ratio
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whereL stands for the length scale of any solution component worth resolving. Even for well
resolved signals in GFD flows, the Peclet number associated with numerical diffusion is often
insufficiently large, and numerical diffusion is a problem that plagues the upwind scheme.

The observation that the scheme introduces artificial diffusion is interesting and annoy-
ing, and the question is now to identify its origin in order to reduce it. Compared to the
centered scheme, which is symmetric and of second order, the upwind scheme uses exclu-
sively information form the upstream side, the donor cell, and is only of first order. Numerical
diffusion must, therefore, be associated with the asymmetry in the flux calculation, and to re-
duce numerical diffusion we must somehow take into account values of c̃ on both sides of the
interface to calculate the flux and thereby seek a scheme that is second-order accurate.

This can be accomplished with the Lax-Wendroff scheme, which estimates the flux at the
cell interface not by assuming that the function is constant within the cell but varies linearly
across it:

3Note that using the original equations, the physical solution satisfies ∂2c/∂t2 = u2∂2c/∂x2, which is some-
times used as a shortcut to eliminate the second time derivative from the modified equation. This is, however,
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unfortunately this does not always work for GFD
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so that the scheme is
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. (6.33)

Interestingly enough, the scheme can be used without need of artificial boundary condi-
tions or special initialization, as we can see from algorithm (6.33) or the numerical domain
of dependence (Figure 6-7). The CFL condition0≤ C ≤ 1provides the necessary condition
for stability.

x

t stable

unstable

Figure 6-7 Domain of dependence of
the upwind scheme. If the characteris-
tic (dashed line) lies outside the numer-
ical domain of dependence, unphysical
behavior will be manifested as numeri-
cal instability. The necessary CFL sta-
bility condition therefore requires 0 ≤
C ≤ 1 so that the characteristic lies
within the numerical domain of depen-
dence (cases of solid lines). One ini-
tial condition and one upstream bound-
ary condition are sufficient to deter-
mine the numerical solution.

The stability of the scheme could be analyzed with the Von Neumann method, but the
simplicity of the scheme permits another approach, the so-called energy method. The energy
method considers the sum of squares of c̃ and determines whether it remains bounded over
time, providing a sufficient condition for stability. We start with (6.33), square it and sum
over the domain:
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. (6.34)

The first and last terms on the right can be grouped by shifting the index i in the last sum and
invoking cyclic boundary conditions so that
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We can find an upper bound for the last term by using the following inequality:
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which can be proved by using again the cyclic condition. If C(1− C) > 0the last term in
(6.35) may be replaced by the upper bound of (6.36) so that

For a positive velocity the upwind (e.g. downstream)
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Figure 6-9 Second-order Lax-
Wendroff scheme applied to the
advection of a “top-hat” signal with
C = 0.5 after 100 times steps. Disper-
sion and non-monotonic behavior are
noted.

q̃i−1/2 = u

[
c̃n

i
+ c̃n

i−1

2
−

C

2

(

c̃
n

i
− c̃

n

i−1

)
]

= u c̃
n

i−1 + (1 − C)
u∆x

2

c̃n

i
− c̃n

i−1

∆x
︸ ︷︷ ︸

≃(1−C) u∆x

2

∂c̃

∂x

.
(6.41)

The last term is in addition to the upwind flux uc̃n

i−1 and serves to negate numerical diffusion
by adding an anti-diffusion flux with negative diffusion coefficient−u∆x(1 − C)/2, i.e., the
precise opposite of numerical diffusion.

Substitution of this flux into the finite-volume scheme leads to the following scheme:
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(6.42)

which, compared to the upwind scheme, includes an additional anti-diffusion term with co-
efficient constructed to negate the numerical diffusion of the upwind scheme. The effect of
this higher-order approach on the solution of our test case is a reduced overall error but the
appearance of dispersion (Figure 6-9). This is due to the fact that we eliminated the trun-
cation error proportional to the second spatial derivative (an even derivative associated with
dissipation) and now have a truncation error proportional to the third spatial derivative (an
odd derivative associated with dispersion, see theoretical Numerical Exercise 6-8).

The same dispersive behavior is observed with the Beam-Warming scheme, in which the
anti-diffusion term is shifted upstream so as to anticipate the gradient that will arrive later at
the interface:

q̃i−1/2 = u c̃
n

i−1 + (1 − C)
u

2
(c̃

n

i−1 − c̃
n

i−2 ). (6.43)

Modify scheme and add corrections Lax-Wendroff 

162 CHAPTER 6. TRANSPORT AND FATE

0 10 20 30 40 50 60 70 80 90
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

i

c

Figure 6-9 Second-order Lax-
Wendroff scheme applied to the
advection of a “top-hat” signal with
C = 0.5 after 100 times steps. Disper-
sion and non-monotonic behavior are
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The last term is in addition to the upwind flux uc̃n

i−1 and serves to negate numerical diffusion
by adding an anti-diffusion flux with negative diffusion coefficient−u∆x(1 − C)/2, i.e., the
precise opposite of numerical diffusion.

Substitution of this flux into the finite-volume scheme leads to the following scheme:
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which, compared to the upwind scheme, includes an additional anti-diffusion term with co-
efficient constructed to negate the numerical diffusion of the upwind scheme. The effect of
this higher-order approach on the solution of our test case is a reduced overall error but the
appearance of dispersion (Figure 6-9). This is due to the fact that we eliminated the trun-
cation error proportional to the second spatial derivative (an even derivative associated with
dissipation) and now have a truncation error proportional to the third spatial derivative (an
odd derivative associated with dispersion, see theoretical Numerical Exercise 6-8).

The same dispersive behavior is observed with the Beam-Warming scheme, in which the
anti-diffusion term is shifted upstream so as to anticipate the gradient that will arrive later at
the interface:
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Popular method


