$$
\frac{d u}{d t}=Q(t, u) .
$$

For simplicity, we consider here a scalar variable u, but extension to a $\mathbf{x}=(u, v)$, is straightforward.

The previous methods can be recapitulated as follows:

- The explicit Euler method (forward scheme):

$$
\tilde{u}^{n+1}=\tilde{u}^{n}+\Delta t Q^{n}
$$

- The implicit Euler method (backward scheme):

$$
\tilde{u}^{n+1}=\tilde{u}^{n}+\Delta t Q^{n+1}
$$

- The semi-implicit Euler scheme (trapezoidal scheme):

$$
\tilde{u}^{n+1}=\tilde{u}^{n}+\frac{\Delta t}{2}\left(Q^{n}+Q^{n+1}\right)
$$

- A general two-points scheme (with $0 \leq \alpha \leq 1$):

$$
\tilde{u}^{n+1}=\tilde{u}^{n}+\Delta t\left[(1-\alpha) Q^{n}+\alpha Q^{n+1}\right]
$$

Figure 2-12 Time integration of the source term Q between t^{n} and t^{n+1} : (a) exact integration, (b) explicit scheme, (c) implicit scheme, and (d) semi-implicit, trapezoidal scheme.
scheme can be viewed as approximations of this integral:

$$
u\left(t^{n+1}\right)=u\left(t^{n}\right)+\int_{t^{n}}^{t^{n+1}} Q d t
$$

all 2-point methods are all first order, except trapezoidal

$$
\frac{d u}{d t}=Q(t, u)
$$

however, Q depends on u
so how to know $\mathrm{Q}(\mathrm{n}+1)$ without $\mathrm{u}(\mathrm{n}+1)$?

Such an approximation may proceed by using a first guess \tilde{u}^{\star} in the Q term:

$$
\begin{equation*}
Q^{n+1} \simeq Q\left(t^{n+1}, \tilde{u}^{\star}\right) \tag{2.49}
\end{equation*}
$$

as long as \tilde{u}^{\star} is a sufficiently good estimate of \tilde{u}^{n+1}. The closer \tilde{u}^{\star} is to \tilde{u}^{n+1}, the more faithful is the scheme to the ideal implicit value. If this estimate \tilde{u}^{\star} is provided by a preliminary explicit (forward) step, according to:

$$
\begin{aligned}
\text { 2-step method } \tilde{u}^{\star} & =\tilde{u}^{n}+\Delta t Q\left(t^{n}, \tilde{u}^{n}\right) \quad \text { forward step to guess u(n+1) --> } \mathrm{u}^{\star} \\
\tilde{u}^{n+1} & =\tilde{u}^{n}+\frac{\Delta t}{2}\left(Q\left(t^{n}, \tilde{u}^{n}\right)+Q\left(t^{n+1}, \tilde{u}^{\star}\right)\right) \quad \text { semi-implicit step }
\end{aligned}
$$

we obtain a two-step algorithm, called the Heun method. It can be shown to be second-order accurate.

This second-order method is actually a particular member of a family of so-called predictorcorrector methods, in which a first guess \tilde{u}^{\star} is used as a proxy of \tilde{u}^{n+1} in the computation of complicated terms.

Family of predictor-corrector methods --> 2nd order

Higher-order schemes

Need more values of Q

Option B: or use values of $Q(n-1) Q(n-2)$ etc..

Figure 2-13 Runge-Kutta schemes of increasing complexity: (a) mid-point integration, (b) integration with parabolic interpolation, (c) with cubic interpolation.

Option A
Example (a) of mid-point rule 2nd order, no advantage over the Heun Scheme

$$
\begin{aligned}
\tilde{u}^{n+1 / 2} & =\tilde{u}^{n}+\frac{\Delta t}{2} Q\left(t^{n}, \tilde{u}^{n}\right) \\
\tilde{u}^{n+1} & =\tilde{u}^{n}+\Delta t Q\left(t^{n+1 / 2}, \tilde{u}^{n+1 / 2}\right)
\end{aligned}
$$

Example (b) parabolic integration

4th order, higher order achieved with fitting higher order polynbomials

$$
\begin{aligned}
\tilde{u}_{a}^{n+1 / 2}= & \tilde{u}^{n}+\frac{\Delta t}{2} Q\left(t^{n}, \tilde{u}^{n}\right) \\
\tilde{u}_{b}^{n+1 / 2}= & \tilde{u}^{n}+\frac{\Delta t}{2} Q\left(t^{n+1 / 2}, \tilde{u}_{a}^{n+1 / 2}\right) \\
\tilde{u}^{\star}= & \tilde{u}^{n}+\Delta t Q\left(t^{n+1 / 2}, \tilde{u}_{b}^{n+1 / 2}\right) \\
\tilde{u}^{n+1}= & \tilde{u}^{n}+\Delta t\left(\frac{1}{6} Q\left(t^{n}, \tilde{u}^{n}\right)+\frac{2}{6} Q\left(t^{n+1 / 2}, \tilde{u}_{a}^{n+1 / 2}\right)\right. \\
& \left.+\frac{2}{6} Q\left(t^{n+1 / 2}, \tilde{u}_{b}^{n+1 / 2}\right)+\frac{1}{6} Q\left(t^{n+1}, \tilde{u}^{\star}\right)\right) .
\end{aligned}
$$

Q

Q

Q Adam Bashforth

leapfrog 2nd order

The most popular method in GFD models is the leapfrog method, which simply reuses the value at time step $n-1$ to "jump over" the Q term at t^{n} in a $2 \Delta t$ step:

$$
\begin{equation*}
\tilde{u}^{n+1}=\tilde{u}^{n-1}+2 \Delta t Q^{n} . \tag{2.53}
\end{equation*}
$$

This algorithm offers second-order accuracy while being fully explicit.

Adam Bashforth 2nd order

$$
\tilde{u}^{n+1}=\tilde{u}^{n}+\Delta t \frac{\left(3 Q^{n}-Q^{n-1}\right)}{2}
$$

these methods are typically harder to start because you are missing previous values of the function

Some considerations (read book)

Figure 2-15 Schematic representation of discretization properties and mathematical properties interplay.

Figure 2-16 Schematic representation of discretization properties and mathematical properties interplay exemplified in the case of inertial oscillation.

