Predictor-corrector methods

when considering nonlinear source terms

du

% = Q(t7 U)

For simplicity, we consider here a scalar variable u, but extension to a

x = (u,v), is straightforward.

The previous methods can be recapitulated as follows:
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The explicit Euler method (forward scheme):

Wt =" 4+ ALQ"

The implicit Euler method (backward scheme):

= " + At Q"

The semi-implicit Euler scheme (trapezoidal scheme):
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A general two-points scheme (with 0 < o < 1):
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Figure 2-12 Time integration of the source term Q between " and ¢t"': (a) exact integration, (b)
explicit scheme, (c) implicit scheme, and (d) semi-implicit, trapezoidal scheme.

scheme can be viewed as approximations of this integral:

w(t™) = u(t") +

Q dt,

tn

all 2-point methods
are all first order,
except trapezoidal




Higher order methods require higher density in sampling Q

d’LL however, Q depends onu
dt

so how to know Q(n+1) without u(n+1)?

Such an approximation may proceed by using a first guess @* in the () term:

QM ~ Q" ur), (2.49)

as long as 7.* is a sufficiently good estimate of 4™ . The closer @* is to ™!, the more faith-
ful is the scheme to the ideal implicit value. If this estimate u* is provided by a preliminary
explicit (forward) step, according to:

2-stepmethod @+ = @ + AtQE",a") forward step to guess u(n+1) --> u*
A
artl = gn 4+ 775 (QE", ™) + Q(t”“,a*)) semi-implicit step

we obtain a two-step algorithm, called the| Heun method 1t can be shown to be second-order
accurate.

This second-order method is actually a particular member of a family of so-called predictor-
corrector methods, in which a first guess @* is used as a proxy of @"*! in the computation of
complicated terms.

Family of predictor-corrector methods --> 2nd order



Higher-order schemes

Need more values of Q

Option A: include intermediate points between tn tn+1 Range-Kutta methods
Option B: or use values of Q(n-1) Q(n-2) etc.. multi-steps methods
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Figure 2-13 Runge-Kutta schemes of increasing complexity: (a) mid-point integration, (b) integration
with parabolic interpolation, (c) with cubic interpolation.

Option A

Example (a) of mid-point rule 2nd order, no advantage over the Heun Scheme

At
A=At QA"

,an+1 — " + At Q(tn+1/27,&n+1/2).

Example (b) parabolic integration 4th order, higher order achieved with fitting higher
order polynbomials
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Option B: using previous values of Q

leapfrog

tnt

Q Adam Bashforth

Figure 2-14 (a) Exact integration from
t" ! or t" towards t" !, (b) leapfrog
integration starts from ¢"~' to reach
t" 1 whereas (c) Adams-Bashforth in-
tegration starts from ¢" to reach ¢"**
using previous values to extrapolate ()

over the integration interval ¢", t" ',
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leapfrog 2nd order

The most popular method in GFD models is the leapfrog method, which simply reuses the
value at time step n — 1 to “jump over” the () term at ¢" in a 2At step:

amtt = gt 4+ 2AE Q. (2.53)

This algorithm offers second-order accuracy while being fully explicit.



Adam Bashforth 2nd order

a"tt = 4™ + At

(3Qn - Qn—l)
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these methods are typically harder to start because you are missing previous values

of the function

Some considerations (read book)
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Figure 2-15 Schematic representation of discretization properties and mathematical properties inter-

play.
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Figure 2-16 Schematic representation of discretization properties and mathematical properties inter-
play exemplified in the case of inertial oscillation.



