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ũ

ṽ
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Figure 2-11 Representation (called a hodograph) of the numerical solution (ũ, ṽ) (2.32a)–(2.32b) of
the explicit discretization of the inertial oscillation (α = 0), the implicit version (α = 1) and the
semi-implicit scheme (α = 1/2). The hodograph on the left was obtained with f∆t = 0.05 and the
one on the right panel with f∆t = 0.005. The inertial oscillation (Figure 2-4) is clearly visible, but
the explicit scheme induces spiralling out and the implicit scheme spiralling in. When the time step
is reduced (moving from left panel to right panel), the solution approaches the exact solution. In both
cases, 10 inertial periods were simulated.

2.8 Predictor-corrector methods
Up to now, we have illustrated numerical discretizations on the linear equations describing
inertial oscillations. The methods can be easily generalized to equations with a nonlinear
source term Q in the equation governing the variable u, as

du

dt
= Q(t, u). (2.43)

For simplicity, we consider here a scalar variable u, but extension to a state vector x, such as
x = (u, v), is straightforward.

The previous methods can be recapitulated as follows:

• The explicit Euler method (forward scheme):

ũ
n+1

= ũ
n

+ ∆t Q
n (2.44)

• The implicit Euler method (backward scheme):

ũ
n+1

= ũ
n

+ ∆t Q
n+1 (2.45)

• The semi-implicit Euler scheme (trapezoidal scheme):

ũ
n+1

= ũ
n

+
∆t

2

(

Q
n

+ Q
n+1
)

(2.46)

when considering nonlinear source terms
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ṽ

α = 0
α = 1
α = 1/2

Figure 2-11 Representation (called a hodograph) of the numerical solution (ũ, ṽ) (2.32a)–(2.32b) of
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• A general two-points scheme (with 0 ≤ α ≤ 1):

ũ
n+1

= ũ
n

+ ∆t
[

(1− α)Q
n

+ αQ
n+1
]

. (2.47)
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Figure 2-12 Time integration of the source term Q between tn and tn+1: (a) exact integration, (b)
explicit scheme, (c) implicit scheme, and (d) semi-implicit, trapezoidal scheme.

Note that these schemes may be interpreted either as finite-difference approximations of
the time derivative or finite-difference approximations of the time integration of the source
term. Indeed,

u(t
n+1

) = u(t
n
) +

∫
t
n+1

t
n

Q dt, (2.48)

and the various schemes can be viewed as different ways of approximating the integral, as
depicted in Figure 2-12. All discretization schemes based on the exclusive use of Qn and
Qn+1 to evaluate the integral between tn and tn+1, which are called two-point methods, are
inevitably first-order methods, except the semi-implicit (or trapezoidal) scheme, which is of
second order. Second order is thus the highest order achievable with a two-point method. To
achieve an order higher than two, denser sampling of theQ term must be used to approximate
the time integration.

Before considering this, however, a serious handicap should be noted: The source termQ

depends on the unknown variable ũ, and we face the problem of not being able to calculate
Qn+1 before we know ũn+1, which is to be calculated from the value of Qn+1. There is a
vicious circle here! In the original case of inertial oscillations, the circular dependence was
overcome by an algebraic manipulation of the equations prior to solution (gathering all n + 1

terms on the left), but when the source term is nonlinear, as is often the case, such preliminary
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are all first order, 
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Higher order methods require higher density in sampling Q
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Figure 2-11 Representation (called a hodograph) of the numerical solution (ũ, ṽ) (2.32a)–(2.32b) of
the explicit discretization of the inertial oscillation (α = 0), the implicit version (α = 1) and the
semi-implicit scheme (α = 1/2). The hodograph on the left was obtained with f∆t = 0.05 and the
one on the right panel with f∆t = 0.005. The inertial oscillation (Figure 2-4) is clearly visible, but
the explicit scheme induces spiralling out and the implicit scheme spiralling in. When the time step
is reduced (moving from left panel to right panel), the solution approaches the exact solution. In both
cases, 10 inertial periods were simulated.

2.8 Predictor-corrector methods
Up to now, we have illustrated numerical discretizations on the linear equations describing
inertial oscillations. The methods can be easily generalized to equations with a nonlinear
source term Q in the equation governing the variable u, as

du

dt
= Q(t, u). (2.43)

For simplicity, we consider here a scalar variable u, but extension to a state vector x, such as
x = (u, v), is straightforward.

The previous methods can be recapitulated as follows:

• The explicit Euler method (forward scheme):

ũ
n+1

= ũ
n

+ ∆t Q
n (2.44)

• The implicit Euler method (backward scheme):

ũ
n+1

= ũ
n

+ ∆t Q
n+1 (2.45)

• The semi-implicit Euler scheme (trapezoidal scheme):

ũ
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= ũ
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+
∆t
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(

Q
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+ Q
n+1
)

(2.46)

however, Q depends on u

so how to know Q(n+1) without u(n+1)?
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manipulation is generally not possible and we need to circumvent the exact calculation by
searching for a good approximation.

Such an approximation may proceed by using a first guess ũ! in the Q term:

Q
n+1 ! Q(t

n+1
, ũ
!
), (2.49)

as long as ũ! is a sufficiently good estimate of ũn+1. The closer ũ! is to ũn+1, the more faith-
ful is the scheme to the ideal implicit value. If this estimate ũ! is provided by a preliminary
explicit (forward) step, according to:

ũ
!

= ũ
n

+ ∆t Q(t
n
, ũ

n
) (2.50a)

ũ
n+1

= ũ
n

+
∆t

2

(

Q(t
n
, ũ

n
) + Q(t

n+1
, ũ
!
)
)

(2.50b)

we obtain a two-step algorithm, called the Heun method. It can be shown to be second-order
accurate.

This second-ordermethod is actually a particular member of a family of so-called predictor-
corrector methods, in which a first guess ũ! is used as a proxy of ũn+1 in the computation of
complicated terms.

2.9 Higher-order schemes
If we want to go beyond second-ordermethods, we need to take into account a greater number
of values of the Q term than those at tn and tn+1. We have two basic possibilities: either
to include intermediate points between tn and tn+1, or to use Q values at previous steps
n− 1, n− 2, .... The first approach leads to the so-called family of Runge-Kutta methods (or
multi-stage methods), while the second generates the so-called multi-step methods.
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Figure 2-13 Runge-Kutta schemes of increasing complexity: (a) mid-point integration, (b) integration
with parabolic interpolation, (c) with cubic interpolation.

The simplest method, using a single intermediate point, is the so-calledmid-point method.
In this case (Figure 2-13), the integration is achieved by first calculating the value ũn+1/2

forward step to guess u(n+1) --> u*

semi-implicit step 

2-step method

Family of predictor-corrector methods --> 2nd order
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n

+
∆t

2

(

Q(t
n
, ũ
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Option A: include intermediate points between tn tn+1
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Example (a) of mid-point rule
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(playing the role of ũ!) at an intermediate stage tn+1/2 and then integrating for the whole
step based on this mid-point estimate:

ũ
n+1/2

= ũ
n

+
∆t

2
Q(t

n
, ũ

n
) (2.51a)

ũ
n+1

= ũ
n

+ ∆t Q(t
n+1/2

, ũ
n+1/2

). (2.51b)

This method, however, is only second-order accurate and offers no improvement over the
earlier Heun method (2.50).

A popular fourth-order method can be constructed by using a parabolic interpolation be-
tween the values of Q with two successive estimates at the central point before proceeding
with the full step:

ũ
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6
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, ũ
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. (2.52d)

We can increase the order to any desired level by using higher-polynomial interpolations
(Figure 2-13).

As mentioned earlier, instead of using intermediate points to increase the order of accu-
racy, we can exploit already available evaluations of Q from previous steps (Figure 2-14).
The most popular method in GFD models is the leapfrog method, which simply reuses the
value at time step n− 1 to “jump over” the Q term at tn in a 2∆t step:

ũ
n+1

= ũ
n−1

+ 2∆t Q
n
. (2.53)

This algorithm offers second-order accuracy while being fully explicit.
An alternative second-order method using the value at n − 1 is the so-called Adams-

Bashforth method:

ũ
n+1

= ũ
n

+ ∆t

(

3Qn −Qn−1
)

2
, (2.54)

which can be interpreted in the light of Figure 2-14 (bottom panel). Higher-order methods
can be constructed by recalling more points from the past (n − 2, n − 3, ...), but we will
not pursue this approach further for the following two reasons. Firstly, using anterior points
creates a problem at the start of the calculation from the initial condition. The first step must
be different in order avoid using one or several points that do not exist, and an explicit Euler
scheme is usually performed. One such step is sufficient to initiate the leapfrog and Adams-
Bashforth schemes, but methods that use earlier values (at n − 2, n − 3, ...) require more

2nd order, no advantage over the Heun Scheme

Example (b) parabolic integration 4th order, higher order achieved with fitting higher 
order polynbomials
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n

+
∆t

2
Q(t

n+1/2
, ũ
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Option A



Option B: using previous values of Q
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racy, we can exploit already available evaluations of Q from previous steps (Figure 2-14).
The most popular method in GFD models is the leapfrog method, which simply reuses the
value at time step n− 1 to “jump over” the Q term at tn in a 2∆t step:

ũ
n+1

= ũ
n−1

+ 2∆t Q
n
. (2.53)

This algorithm offers second-order accuracy while being fully explicit.
An alternative second-order method using the value at n − 1 is the so-called Adams-

Bashforth method:

ũ
n+1

= ũ
n

+ ∆t

(

3Qn −Qn−1
)

2
, (2.54)

which can be interpreted in the light of Figure 2-14 (bottom panel). Higher-order methods
can be constructed by recalling more points from the past (n − 2, n − 3, ...), but we will
not pursue this approach further for the following two reasons. Firstly, using anterior points
creates a problem at the start of the calculation from the initial condition. The first step must
be different in order avoid using one or several points that do not exist, and an explicit Euler
scheme is usually performed. One such step is sufficient to initiate the leapfrog and Adams-
Bashforth schemes, but methods that use earlier values (at n − 2, n − 3, ...) require more

2.9. HIGHER-ORDER SCHEMES 61

tn tn+1

Q

tn tn+1

Q

(b)

(c)
t

t

tn−1

tn−1

tn tn+1

Q

(a)
t

tn−1

Figure 2-14 (a) Exact integration from
tn−1 or tn towards tn+1, (b) leapfrog
integration starts from tn−1 to reach
tn+1, whereas (c) Adams-Bashforth in-
tegration starts from tn to reach tn+1,
using previous values to extrapolate Q
over the integration interval tn, tn+1.

cumbersome care, which can amount to considerable effort in a GFD code. Secondly, the use
of several points in the past demands a proportional increase in computer storage, because
values cannot be discarded as quickly before making room for newer values. Again, for a sin-
gle equation, this is not much of a trouble, but in actual applications, size matters and only a
few past values can be stored in the central memory of the machine. A similar problem arises
also with multi-stage methods, although these do not need any particular starting mechanism.

We can conclude the section by remarking that higher-order methods can always be de-
signed but at the price of more frequent evaluations of the right-hand side of the equation
(potentially a very complicated term) and/or greater storage of numerical values at different
time steps. Since higher-order methods create more burden on the computation, we ought to
ask whether they at least provide better numerical solutions than lower-order methods. We
have therefore to address the question of accuracy of these methods, which will be considered
in Section 4.8.

A fundamental difference between analytical solutions and numerical approximations
emerges. For some equations, properties of the solution can be derived without actually
solving the equations. It is easy to prove, for example, that the velocity magnitude remains

leapfrog

Adam Bashforth

leapfrog  2nd order



Adam Bashforth 2nd order
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(playing the role of ũ!) at an intermediate stage tn+1/2 and then integrating for the whole
step based on this mid-point estimate:
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This method, however, is only second-order accurate and offers no improvement over the
earlier Heun method (2.50).

A popular fourth-order method can be constructed by using a parabolic interpolation be-
tween the values of Q with two successive estimates at the central point before proceeding
with the full step:
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n
) +

2

6
Q(t

n+1/2
, ũ
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We can increase the order to any desired level by using higher-polynomial interpolations
(Figure 2-13).

As mentioned earlier, instead of using intermediate points to increase the order of accu-
racy, we can exploit already available evaluations of Q from previous steps (Figure 2-14).
The most popular method in GFD models is the leapfrog method, which simply reuses the
value at time step n− 1 to “jump over” the Q term at tn in a 2∆t step:

ũ
n+1

= ũ
n−1

+ 2∆t Q
n
. (2.53)

This algorithm offers second-order accuracy while being fully explicit.
An alternative second-order method using the value at n − 1 is the so-called Adams-

Bashforth method:

ũ
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= ũ
n

+ ∆t

(

3Qn −Qn−1
)

2
, (2.54)

which can be interpreted in the light of Figure 2-14 (bottom panel). Higher-order methods
can be constructed by recalling more points from the past (n − 2, n − 3, ...), but we will
not pursue this approach further for the following two reasons. Firstly, using anterior points
creates a problem at the start of the calculation from the initial condition. The first step must
be different in order avoid using one or several points that do not exist, and an explicit Euler
scheme is usually performed. One such step is sufficient to initiate the leapfrog and Adams-
Bashforth schemes, but methods that use earlier values (at n − 2, n − 3, ...) require more

these methods are typically harder to start because you are missing previous values 
of the function

62 CHAPTER 2. THE CORIOLIS FORCE

Primitive equations

Discrete equations

Deduced properties

Deduced discrete properties

Discretized deduced properties

!

"

#

$

!=

Figure 2-15 Schematic representation of discretization properties and mathematical properties inter-
play.

constant during an inertial oscillation. The numerical solution on the other hand is generally
not guaranteed to satisfy the same property as its analytical counterpart (the explicit Euler
discretization did not conserve the velocity norm). Therefore, we cannot be sure that math-
ematical properties of the analytical solutions will also be present in the numerical solution.
This might appear as a strong drawback of numerical methods but can actually be used to
assess the quality of numerical schemes. Also, for numerical schemes with adjustable param-
eters (as the implicit factor), those parameters can be chosen so that the numercial solution
respects as best as possible the exact properties.

We can summarize by recognizing the fact that numerical solutions generally do not in-
herit the mathematical properties of the exact solution (Figure 2-15), a handicap particu-
larly easy to understand in the case of inertial oscillation and its discretization by an ex-
plicit scheme (Figure 2-16). Later we will encounter other properties (energy conservation,
potential-vorticity conservation, positiveness of concentrations, etc.) that can be used to guide
the choice of parameter values in numerical schemes.
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Figure 2-16 Schematic representation of discretization properties and mathematical properties inter-
play exemplified in the case of inertial oscillation.

Analytical Problems

2-1. On Jupiter, a day lasts 9.9 Earth hours and the equatorial circumference is 448,600
km. Knowing that the measured gravitational acceleration at the equator is 26.4 m/s2,
deduce the true gravitational acceleration and the centrifugal acceleration.

2-2. The Japanese Shinkansen train (bullet train) zips from Tokyo to Ozaka (both at approx-
imately 35◦N) at a speed of 185 km/h. In the design of the train and tracks, do you
think that engineers had to worry about the earth’s rotation? (Hint: The Coriolis effect
induces an oblique force, the lateral component of which could produce a tendency of
the train to lean sideways.)

2-3. Determine the lateral deflection of a cannonball that is shot in London (51◦31′N) and
flies for 25 s at an average horizontal speed of 120 m/s. What would be the lateral
deflection in Murmansk (68◦52′N) and Nairobi (1◦18′S)?

2-4. On a perfectly smooth and frictionless hockey field at Dartmouth College (43◦38′N),
how slowly should a puck be driven to perform an inertial circle of diameter equal to
the field width (26 m)?

2-5. A stone is dropped from a 300-m-high bridge at 35◦N. In which cardinal direction is it
deflected under the effect of the earth’s rotation? How far from the vertical does the
stone land? (Neglect air drag.)

Some considerations (read book)


