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Solving dynamical equations on a
computer requires knowledge of
numerical analysis and methods

Scale Analysis

Estimating derivatives with finite
differencing

Accuracy and higher order
methods

Convergence and Stability
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Material is found at the end of Chap. 1 and 2



Modeling the Ocean and the Atmosphere

Complex differential equations

Set of arithmetic operations

step by step method of solution
(model time-stepping)

at selected points in space
(model spatial grid)

Lewy.

example of an early
computation (1 928)
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Model grld used by Lew1s Fry Richardson

CAVEAT ! The concept of numerical stability was
not known until 1928 when it was elucidated by Richard Courant, Karl Friedrichs and Hans




Scale Analysis basis for estimating the relative importance of different
terms in time-marching equations

du U

dt T

d?u o d [(du U/T_ U

dt2  dt \ dt T T2
- L >

U Figure 1-11 Time-scale analysis of a
variable u. The time scale 7’ is the time
interval over which the variable u ex-
hibits variations comparable to its stan-
t dard deviation U.




Estimating Derivative with accuracy using a discretized version of the

equations
A u
Slope approximation : :
b®app Continuous function
Real slop At
° ° Figure 1-12 Representation of a func-
. tion by a finite number of sampled val-
. Discrete values .- ues and approximation of a first deriva-
gt t tive by a finite difference over At.

discretize the independent variable time f with a constant time step At

Having stored only a few values of the function, how can we retrieve
the value of the function’s derivatives that appear in the equations?

t"=t"4+nAt, n=1,2,...



Estimating Derivative with accuracy using a discretized version of the
equations --> finite differencing

du . u(t+ At) —u(t)
dt Alir—r}o At ’

we could directly deduce an approximation by allowing At to remain the finite time step

(1.10)

~ . (1.11)

The accuracy of this approximation can be determined with the help of a Taylor series:

du At? d?u At3 d3u

u(t + At) = u(t) + At — - +O(AY). (1.12)
dt|, 2 dt2|, 6 dB|,
At? o5 At3 s

To the leading order for small At, we obtain the following estimate

_ == (1.13)

du  u(t+ At) — u(t) At U
dt At O ( ) '



Estimating Derivative

du  u(t+ At) —u(t) Lo At U

dt At T T)
error term or truncation error
need to be smaller than 1 so

that At <« T

A Figure 1-13 Finite differencing with
- various At values. Only when the time
 \ step is sufficiently short compared to
the time scale, At < T, is the finite-

t difference slope close to the derivative,
At>>T i.e., the true slope.

\




Total Number of Operations grows fast when we consider
both space and time

GFDL CM 2.6 Ocean Simulation

Sea Surface Temperature

August 12
A

1 Teraflops = 1012 floating operations per second



Higher-order methods
rather than to increase resolution use other approximations for
derivatives in the finite differencing

du At? d?u At dBu

"t = - At — _— | 4+ — — +O(At4) (1.19)
dt |, 2 dt?|,., 6 dt’|,
du At? d?u A3 dBu

um =" — At — _— | - — — +(’)(At4), (1.20)
dt |,n 2 dt? in 6 dt3 in

we can imagine that instead of using a forward difference approximation of the time derivative
(1.11) we try a backward Taylor series (1.20) to design a backward difference approximation.
This approximation is obviously still of first order because of its truncation error:

u” — un—l
= At). 1.21
. N + O(At) (1.21)

du
dt

Comparing (1.19) with (1.20), we observe that the truncation errors of the first-order
forward and backward finite differences are the same but have opposite signs, so that by

averaging both, we obtain a second-order truncation error (you can verify this statement by
taking the difference between (1.19) and (1.20)):

un—l—l - un—l

_ 2
T v O(A?). (1.22)

du
dt




Higher-order methods
rather than to increase resolution use other approximations for
derivatives in the finite differencing

Error dependance on scheme order and At
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Higher-order methods
Taylor series is not useful to derive higher order schemes
(e.g. 4th order centered finite-difference approximation of the first derivative)

du

pr ~a su" 2 +a_1u"t + agu”™ + au™ T + apu™ .
tn

higher order approximation need more information
about a function (e.g. at multiple time levels)



Higher-order methods
Taylor series is not useful to derive higher order schemes
(e.g. 4th order centered finite-difference approximation of the first derivative)

Expanding u" "2 and the other values around t" by Taylor series, we can write
d =0
U
— | =(a—2 tao1 +ao+ar +az) u"
t|n 3
du
+@—26L_2 —a_1+ aq1 + 2&2) At E
tn
=0
At? d*u
N\
+@4a_2;— a_1+ay+ 4&2)J > ae |,
= A3 d3u
*\-G—SCLQO— a_1+ a1+ 8&2) 6 a3 .
= Attt dtu
H(16a-2 +a 1 + a1 +16a) T —3 )
At d’u
—32a_92 —a_ 32
+(—32a—2 —a—1 + a1 + 32az) 20 @ |,

+O(ALY).



Higher-order methods
Taylor series is not useful to derive higher order schemes
(e.g. 4th order centered finite-difference approximation of the first derivative)

a_2+a_1+ag+ay+ax =0,
(—2a_2 —a_1+a; + 2&2) At = 1.

da_o+a_1+a;+4a2 = 0
—8CL_2 —a_1+ a1+ 8&2 =
16a_2 +a_1 +a; + 16ax =

\ J
;

= i =0 = ! Solution
\ 1 =M= oAy 0T T A2 T @2 E T oA

4 un—l—l L un—l 1 un—|—2 L un—2
() s ()

4th order centered finite-difference



Higher-order methods
Taylor series is not useful to derive higher order schemes
(e.g. 4th order centered finite-difference approximation of the first derivative)

d
d—r: ~a_ou" " +a_1u™ "+ agu” + agu Tt + agu
tn
du 4 (Tt -yt 1 [u™T2 —u""2\ 4th order centered
dt i 3 IAL 3 ANt finite-difference

8 1 :
—Qa_1 = Qa1 = TAt ,a0=0, —a_9=a9 = TNJ Solution




Higher-order methods
Taylor series is not useful to derive higher order schemes
(e.g. 4th order centered finite-difference approximation of the first derivative)

du
dt |,

~a su" 2 +a_1u""t + apu” + agu™ T + au™ .

Generalize this approach to derive any order scheme

dPu

| = a_ "+ L a_u Fagu™ + au”T + L+ ay,u T
¢

n



Higher-order methods
(e.g. 2nd order centered finite-difference approximation of the 2nd derivative)

... again from Taylor Series

du At? d?u A3 d3u
n—+1 M At e At4
“ 7 P R 7= B R e tn+0( )
du At? d?u A3 d3u
n—=l _ o At — — At?
! ! dt|,., 2 dt?|, 6 dt3|,. OAT),

2nd order centered finite-difference

d?*u N w1t — oy 4
. o At?

dr?




Understanding ALIASING
To sample a wave of frequency w the time step At may not exceed

Atmax == T[/U.) == T/2

which implies that at least two samples of the signal must be taken per period.
This minimum required sampling frequency is called the Nyquist frequency

At

- >

Figure 1-16 Shortest wave (at cut-
off frequency /At or period 2At) re-
T solved by uniform grid in time.




lncreases ﬁ

---- | | |

signal amplitude N Frequency signal appears lower frequency
becomes irregular

At increases ﬁ




Numerical convergence and stability

Consistency
discretized equation for increasing resolution is the exact equation.



Numerical convergence and stability

Consistency
discretized equation for increasing resolution is the exact equation.

Convergence

difference between the exact and discrete solutions tends to zero as At
vanishes.

Lax-Richtmyer equivalence theorem [lax and Richtmyer, 1956]
A consistent finite-difference scheme for a linear partial differential equation

for which the initial value problem is well posed is convergent if and only if it
Is stable.




Numerical convergence and stability

Consistency
discretized equation for increasing resolution is the exact equation.

Convergence

difference between the exact and discrete solutions tends to zero as At
vanishes.

Lax-Richtmyer equivalence theorem [lax and Richtmyer, 1956]

A consistent finite-difference scheme for a linear partial differential equation
for which the initial value problem is well posed is convergent if and only if it
Is stable.

Stability (a concept that has different definition in numerical methods)

An algorithm for solving a linear evolutionary partial differential
equation is stable if the total variation of the numerical solution at a
fixed time remains bounded as the step size goes to zero.

(e.g. the energy of the system does not increase with every time step).



Numerical stability

An example with the Euler Method

di At? [du
~n+1 _ ~n At | — @, Atg
o an [dt]t_tn + = [dtQL_tn + O(At?)
y' =-23y, y(0)=1
3 | | -
] £
stiff equation is a differential .

equation for which certain
numerical methods for

solving the equation are e o
. o .
numerically unstable, _1l |
-2
At=1 .
-3 At=0.7
' , , . .

http://en.wikipedia.org/wiki/Euler _method




8.12: Stability behavior of Euler’'s method

We consider the so-called linear test equation

where A € C is a system parameter which mimics the eigenvalues of linear
systems of differential equations.

The equation is stable if Real(\) < In this case the solution is

0.
exponentially decaying. (lim; ., y(t) =0

)

When is the numerically solution u; also decaying, lim;_, ., u; = 07

C. Fihrer: FMNO081-2005
183



8.12: Stability behavior of Euler’'s method (Cont.)

Explicit Euler discretization of linear test equation:
Uj4+1 = U4 -+ h)\uz

This gives u; 11 = (1 4+ hX)"lug.

The solution is decaying (stable)
if [L+hA <1

C. Fihrer: FMNO081-2005
184



8.13: Stability behavior of Euler’s method (Cont.)

Implicit Euler discretization of linear test equation:

Uil = Ui + hAU;

1 )'i—l—l

This gives u;41 = (—1_h>\

Uop.

The solution is decaying (stable)
if [1—hA>1

C. Fihrer: FMNO081-2005
185



8.14: Stability behavior of Euler’'s method (Cont.)

Explicit Euler’'s instability for fast decaying equations:

C. Fihrer: FMNO081-2005
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8.15: Stability behavior of Euler’s method (Cont.)

Facit:

For stable ODEs with a fast decaying solution (Real(\) << —1)
or highly oscillatory modes (Im(A) >> 1)

the explicit Euler method demands small step sizes.

This makes the method inefficient for these so-called stiff systems.

Alternative: implicit Euler method.

C. Fihrer: FMNO081-2005
187



8.16: Implementation of implicit methods

Implicit Euler method ;.1 = u; + hif(ti—l—lp ui—l—l)
Two ways to solve for Ui41- k is the iteration counter, % the integration step counter

e Fixed point iteration: ugﬁl) = U; + hi f (¢ z'+1,uz('i)1l

_90(“5?1)

e Newton iteration:

Uit = w; + hif(tir1, wiv1) & wiv1 —ug — hif(fig1,ui11) =0

=F(u41)
F’(Ugﬂ)Auz’H = —F(u 'Ei)l) Uq(;fﬁl) = §+)1 + AUy

C. Fihrer: FMNO081-2005
188



8.17: Implementation of implicit methods (Cont.)

These iterations are performed at every integration step!
They are started with explicit Euler method as so-called predictor:

ul) = wi + hif (ti, w;)

When should fixed points iteration and when Newton iteration be used?
The key is contractivity!
Let's check the linear test equation again: y = \y.

Contractivity: |¢/'(u)| = |hA| < 1.

C. Fihrer: FMNO081-2005
189



8.18: Implementation of implicit methods (Cont.)

If the differential equation is

e nonstiff: explicit Euler or
e nonstiff: implicit Euler with fixed point iteration

e stiff: implicit Euler with Newton iteration

C. Fihrer: FMNO081-2005
190



Numerical stability

HX”H < C HXOH Stability

H X' H S H XO H Strict Stability Condition



