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Figure 1-8 Model grid used by Lewis Fry Richardson as reported in his 1922 bookWeather Prediction

by Numerical Process. The grid was designed to optimize the fit between cells and existing meteoro-

logical stations, with observed surface pressures being used at the center of every shaded cell and winds

at the center of every white cell.
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Figure 1-9 Historical improvement of weather forecasting skill over North America. The S1 score

shown here is a measure of the relative error in the pressure gradient predictions at mid-height in the

troposphere. (From Kalnay et al., 1998, reproduction with the kind permission of the American Meteo-

rological Society)

tions (additions, subtractions, multiplications and divisions exclusively) so that a step-by-step

method of solution may be followed and performed by people not necessarily trained in me-

teorology. Such reduction could be accomplished, he reasoned, by seeking the solution at

only selected points in the domain and by approximating spatial derivatives of the unknown

variables by finite differences across those points. Likewise, time could be divided into finite

intervals and temporal derivatives approximated as differences across those time intervals.

And thus was born numerical analysis. Richardson’s work culminated in his 1922 book enti-

tledWeather Prediction by Numerical Process. His first grid, to forecast weather over western

Europe, is reproduced here as Figure 1-8. After the equations of motion had been dissected

into a sequence of individual arithmetic operations, the first algorithm before the word ex-

isted, computations were performed by a large group of people, called computers, sitting

around an auditorium equipped with slide rules and passing their results to their neighbors.

Synchronization was accomplished by a leader in the pit of the auditorium as a conductor

leads an orchestra. Needless to say, the work was tedious and slow, requiring an impracti-

cally large number of people to conduct the calculations quickly enough so that a 24-hour

forecast could be obtained in less than 24 hours.

Despite an enormous effort on Richardson’s part, the enterprise was a failure, with pre-

dicted pressure variations rapidly drifting away from meteorologically acceptable values. In

retrospective, we now know that Richardson’s model was improperly initiated for lack of

upper-level data and that its six-hour time step was exceeding the limit required by numeri-

cal stability, of which, of course, he was not aware. The concept of numerical stability was

not known until 1928 when it was elucidated by Richard Courant, Karl Friedrichs and Hans

Lewy.

The work of Richardson was abandoned and relegated to the status of a curiosity or, as

he put it himself, “a dream”, only to be picked up again seriously at the advent of electronic
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Figure 1-11 Time-scale analysis of a

variable u. The time scale T is the time
interval over which the variable u ex-
hibits variations comparable to its stan-

dard deviation U .

significantly over a time scale T by a typical value U (Figure 1-11). With this definition of

scales, the time derivative is on the order of

du

dt
∼

U

T
. (1.7)

If we then assume that the time scale over which the function u changes is also the one over
which its derivative changes (in other words, we assume the time scale T to be representa-

tive of all type of variabilities, including derived fields), we can also estimate the order of

magnitude of variations of the second derivative

d2u

dt2
=

d

dt

(
du

dt

)

∼
U/T

T
=

U

T 2
, (1.8)

and so on for higher-order derivatives. This approach is the basis for estimating the relative

importance of different terms in time-marching equations, an exercise we will repeat several

times in the next chapters.

We now turn our attention to the question of estimating derivatives with more accuracy

than by a mere order of magnitude. Typically, this problem arises upon discretizing equations,

a process by which all derivatives are replaced by algebraic approximations based on a few

discrete values of the function u (Figure 1-12). Such discretization is necessary because
computers possess a finite memory and are incapable of manipulating derivatives. We then

face the following problem: Having stored only a few values of the function, how can we

retrieve the value of the function’s derivatives that appear in the equations?
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Figure 1-12 Representation of a func-

tion by a finite number of sampled val-

ues and approximation of a first deriva-

tive by a finite difference over ∆t.

First, it is necessary to discretize the independent variable time t, since the first dynamical
equations that we shall solve numerically are time-evolving equations. For simplicity, we

Scale Analysis basis for estimating the relative importance of different 
terms in time-marching equations
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Estimating Derivative with accuracy using a discretized version of the 
equations

discretize the independent variable time t with a constant time step ∆t

Having stored only a few values of the function, how can we retrieve 
the value of the function’s derivatives that appear in the equations?
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shall suppose that the discrete time moments tn, at which the function values are to be known,
are uniformly distributed with a constant time step ∆t

t
n

= t
0

+ n ∆t, n = 1, 2, .... (1.9)

where the superscript index (not an exponent) n identifies the discrete time. Then, we note
by un the value of u at time tn, i.e., un

= u(tn). We now would like to determine the value
of the derivative du/dt at time tn knowing only the discrete values un. From the definition
of a derivative

du

dt
= lim

∆t→0

u(t + ∆t)− u(t)

∆t
, (1.10)

we could directly deduce an approximation by allowing∆t to remain the finite time step

du

dt
"

u(t + ∆t)− u(t)

∆t
→

du

dt

∣
∣
∣
∣
t
n

"
un+1 − un

∆t
. (1.11)

The accuracy of this approximation can be determined with the help of a Taylor series:

u(t + ∆t) = u(t) + ∆t
du

dt

∣
∣
∣
∣
t
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∆t2

2

d2u

dt2

∣
∣
∣
∣
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6
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∣
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∣
t

︸ ︷︷ ︸

∆t
3 U

T3

+O(∆t
4
)

︸ ︷︷ ︸

∆t
4 U

T4

. (1.12)

To the leading order for small ∆t, we obtain the following estimate

du

dt
=

u(t + ∆t)− u(t)

∆t
+ O

(
∆t

T

U

T

)

. (1.13)

The relative error on the derivative (the difference between the finite-difference approxima-
tion and the actual derivative, divided by the scale U/T ) is therefore of the order ∆t/T .
For the approximation to be acceptable, this relative error should be much smaller than one,
which demands that the time step∆t be sufficiently short compared to the time-scale at hand:

∆t$ T. (1.14)

This condition can be visualized graphically by considering the effect of various values of∆t

on the resulting estimation of the time derivative (Figure 1-13). In the following we write the
formal approximation as

du

dt

∣
∣
∣
∣
t
n

=
un+1 − un

∆t
+ O(∆t), (1.15)

where it is understood that the measure of whether or not∆t is “small enough”must be based
on the time-scale T of the variability of the variable u. Since in the simple finite difference
(1.15), the error, called truncation error , is proportional to ∆t, the approximation is said to
be of first order. For an error proportional to ∆t2, the approximation is said of second order
and so on.

For spatial derivatives, the preceding analysis is easily applicable, and we obtain a con-
dition on the horizontal grid size ∆x relatively to the horizontal length scale L, while the
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Estimating Derivative 

error term or truncation error 
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that ∆t ≪ T
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various ∆t values. Only when the time
step is sufficiently short compared to

the time scale, ∆t ! T , is the finite-
difference slope close to the derivative,

i.e., the true slope.

vertical grid space ∆z is constrained by the vertical length scale H of the variable under

investigation:

∆x ! L, ∆z ! H. (1.16)

With these constraints on time-steps and grid sizes, we can begin to understand the need

for significant computer resources in GFD simulations: The number of grid pointsM in a 3D

domain of surface S and heightH is

M =
H

∆z

S

∆x2
, (1.17)

while the total number of time steps N needed to cover a time period P is

N =
P

∆t
. (1.18)

For a model covering the Atlantic Ocean (S ∼ 1014m2), resolving geostrophic eddies

(see Figure 1-7: ∆x ∼ ∆y ≤ 104 m) and stratified water masses (H/∆z ∼ 50) the number
of grid points is aboutM ∼ 5 × 107. Then, at each of these points, several variables need to

be stored and calculated (three-dimensional velocity, pressure, temperature etc.). Since each

variable takes 4 or 8 bytes of memory depending on the desired number of significant digits,

2 Gigabytes of RAM is required. The number of floating point operations to be executed to

simulate a single year can be estimated by taking a time-step resolving the rotational period

of Earth ∆t ∼ 103 s, leading to N ∼ 30000 time steps. The total number of operations to
simulate a full year can then be estimated by observing that for every grid point and time

step, a series of calculations must be performed (typically several hundreds), so that the total

number of calculations amounts to 1014 − 1015. Therefore, on a contemporary supercom-

puter (one of the top 500 machines) with 1 Teraflops = 1012 floating operations per second

exclusively dedicated to the simulation, less than half an hour would pass before the response

is available, while on a high-end PC (1-2 Gigaflops), we would need to wait several days

before getting our results. And yet, even with such a large model, we can only resolve the

largest scales of motion (see Figure 1-7), while motions on shorter spatial and temporal scales

simply cannot be simulated with this level of grid resolution. This does not mean, however,

that those shorter-scale motions may altogether be neglected and, as we will see (e.g., Chap-

ter 14), one of the problems of large-scale oceanic and atmospheric models is the need for

appropriate parameterization of shorter-scale motions so that they may properly bear their

effects onto the larger-scale motions.



1 Tera!ops = 1012  #oating operations per second

Total Number of Operations grows fast when we consider 
both space and time
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Should we dream to avoid such a parameterization by explicitly calculating all scales,
we would need about M ∼ 1024 grid points demanding 5 × 1016 Gigabytes of computer
memory, and N ∼ 3× 10

7 time steps, for a total number of operations on the order of 10
34.

Willing to wait only for 106 seconds before obtaining the results, we would need a computer
delivering 1028 flops . This is a factor 1016 = 253 higher than the present capabilities, both
for speed and memory requirements. Using Moore’s Law, the celebrated rule that forecasts a
factor 2 in gain every 18 months, we would have to wait 53 times 18 months, i.e., for about
80 years before computers could handle such a task.

Increasing resolution will therefore continue to call for the most powerful computers
available, and models will need to include parameterization of turbulence or other unresolved
motions for quite some time. Grid spacing will thus remain a crucial aspect of all GFD
models, simply because of the large domain sizes and broad range of scales.

1.11 Higher-order methods
Rather than to increase resolution to better represent structures, we may wonder whether
using other approximations for derivatives than our simple finite difference (1.11) would
allow larger time-steps or higher quality approximations and improved model results. Based
on a Taylor series

u
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= u
n

+ ∆t
du

dt
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4
) (1.19)
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4
), (1.20)

we can imagine that instead of using a forward difference approximation of the time derivative
(1.11) we try a backward Taylor series (1.20) to design a backward difference approximation.
This approximation is obviously still of first order because of its truncation error:

du

dt

∣
∣
∣
∣
t
n

=
un − un−1

∆t
+ O(∆t). (1.21)

Comparing (1.19) with (1.20), we observe that the truncation errors of the first-order
forward and backward finite differences are the same but have opposite signs, so that by
averaging both, we obtain a second-order truncation error (you can verify this statement by
taking the difference between (1.19) and (1.20)):

du

dt

∣
∣
∣
∣
t
n

=
un+1 − un−1

2∆t
+ O(∆t

2
). (1.22)

Before considering higher-order approximations, let us first check whether the increase
in order of approximation actually leads to improved approximations of the derivatives. To
do so, consider the sinusoidal function of period T (and associated frequency ω)

u = U sin

(

2π
t

T

)

= U sin(ωt), ω =
2π

T
. (1.23)

Higher-order methods 
rather than to increase resolution use other approximations for 
derivatives in the !nite differencing
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difference approximation.

Knowing that the exact derivative is ωU cos(ωt), we can calculate the errors made by the
various finite-difference approximations (Figure 1-14). Both the forward and backward finite
differences converge towards the exact value for ω∆t → 0, with errors decreasing propor-
tionally to ∆t. As expected, the second-order approximation (1.22) exhibits a second-order
convergence (the slope is 2 in a log-log graph).

The convergence rate obeys our theoretical estimate for ω∆t " 1. However, when
the time-step is relatively large (Figure 1-15), the error associated with the finite-difference
approximations can be as large as the derivative itself. For coarse resolution, ω∆t ∼ O(1),
the relative error is of order one, so that we expect a 100% error on the finite-difference
approximation. Obviously, evenwith a second-order finite difference, we need at least ω∆t ≤

0.8 to keep the relative error below 10%. In terms of the period of the signal T = (2π)/ω,
we need a time-step not larger than∆t ! T/8, which implies that 8 points are needed along
one period to resolve its derivatives within a 10% error level. Even a fourth-order method
(to be shown shortly) cannot reconstruct derivatives correctly from a function sampled with
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fewer than several points per period.
The design of the second-order difference was accomplished simply by inspection of a

Taylor series, a technique which cannot be extended to obtain higher-order approximations.
An alternate method exists to obtain in a systematic way finite-difference approximations to
any desired order, and it can be illustrated with the design of a fourth-order centered finite-
difference approximation of the first derivative. Expecting that higher-order approximations
need more information about a function in order to estimate its derivative at time tn, we will
combine values over a longer time interval, including tn−2, tn−1, tn, tn+1 and tn+2:
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Expanding un+2 and the other values around tn by Taylor series, we can write

du

dt

∣
∣
∣
∣
t
n

= (a−2 + a−1 + a0 + a1 + a2) u
n

+ (−2a−2 − a−1 + a1 + 2a2)∆t
du

dt

∣
∣
∣
∣
t
n

+ (4a−2 + a−1 + a1 + 4a2)
∆t2

2

d2u

dt2

∣
∣
∣
∣
t
n

+ (−8a−2 − a−1 + a1 + 8a2)
∆t3

6

d3u

dt3

∣
∣
∣
∣
t
n

+ (16a−2 + a−1 + a1 + 16a2)
∆t4

24

d4u

dt4

∣
∣
∣
∣
t
n

+ (−32a−2 − a−1 + a1 + 32a2)
∆t5

120

d5u

dt5

∣
∣
∣
∣
t
n

+O(∆t
6
). (1.25)

There are 5 coefficients, a−2 to a2, to be determined. Two conditions must be satisfied to
obtain an approximation that tends to the first derivative as∆t→ 0

a−2 + a−1 + a0 + a1 + a2 = 0,

(−2a−2 − a−1 + a1 + 2a2)∆t = 1.

After satisfying these two necessary conditions, we have three parameters that can be freely
chosen so as to obtain the highest possible level of accuracy. This is achieved by imposing
that the coefficients of the next three truncation errors be zero:

4a−2 + a−1 + a1 + 4a2 = 0

−8a−2 − a−1 + a1 + 8a2 = 0

16a−2 + a−1 + a1 + 16a2 = 0.

Equipped with 5 equations for 5 unknowns, we can proceed with the solution:

higher order approximation need more information 
about a function (e.g. at multiple time levels) 
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so that the fourth-order finite-difference approximation of the first derivative is:
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This formula can be interpreted as a linear combination of two centered differences, one
across 2∆t and the other across 4∆t. The truncation error can be assessed by looking at the
next term in the series (1.25)
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which shows that the approximation is indeed of fourth order.
The method can be generalized to approximate a derivative of any order p at time tn using

the current value un,m points in the past (before tn) andm points in the future (after tn):
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The discrete points n − m to n + m involved in the approximation define the so-called
numerical stencil of the operator.
Using a Taylor expansion for each term
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and injecting (1.29) for q = −m, ..., m into the approximation (1.28), we have on the left-
hand side the derivative we want to approximate and on the right a sum of derivatives. We im-
pose that the sum of coefficients multiplying a derivative lower than order p be zero whereas
the sum of the coefficients multiplying the p-th derivative be one. This forms a set of p + 1

equations for the 2m + 1 unknown coefficients aq (q = −m, ..., m). All constraints can be
satisfied simultaneously only if we use a number 2m + 1 of points equal to or greater than
p + 1, i.e., 2m ≥ p. When there are more points than necessary, we can take advantage of
the remaining degrees of freedom to cancel the next few terms in the truncation errors. With
2m + 1 points we can then obtain a finite difference of order 2m− p + 1. For example, with
m = 1 and p = 1, we obtained (1.22), a second-order approximation of the first derivative,
and withm = 2 and p = 1, (1.26), a fourth-order approximation.

Let us now turn to the second derivative, a very common occurence, at least when consid-
ering spatial derivatives. With p = 2, m must be at least 1, i.e., 3 values of the function are
required as a minimum: 1 old, 1 current and 1 future values. Applying the preceding method,
we immediately obtain
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Solution

1.11. HIGHER-ORDER METHODS 29

−a−1 = a1 =
8

12∆t
, a0 = 0, − a−2 = a2 = −

1

12∆t
,

so that the fourth-order finite-difference approximation of the first derivative is:

du

dt

∣
∣
∣
∣
t
n

"
4

3

(
un+1 − un−1

2∆t

)

−
1

3

(
un+2 − un−2

4∆t

)

. (1.26)

This formula can be interpreted as a linear combination of two centered differences, one
across 2∆t and the other across 4∆t. The truncation error can be assessed by looking at the
next term in the series (1.25)

(−32a−2 − a−1 + a1 + 32a2)
∆t5

120

d5u

dt5

∣
∣
∣
∣
t
n

= −
∆t4

30

d5u

dt5

∣
∣
∣
∣
t
n

, (1.27)

which shows that the approximation is indeed of fourth order.
The method can be generalized to approximate a derivative of any order p at time tn using

the current value un,m points in the past (before tn) andm points in the future (after tn):

dpu

dtp

∣
∣
∣
∣
tn

= a−mu
n−m

+ ... + a−1u
n−1

+ a0u
n

+ a1u
n+1

+ ... + amu
n+m

. (1.28)

The discrete points n − m to n + m involved in the approximation define the so-called
numerical stencil of the operator.
Using a Taylor expansion for each term

u
n+q

= u
n

+ q∆t
du

dt

∣
∣
∣
∣
t
n

+ q
2 ∆t2

2

d2u

dt2

∣
∣
∣
∣
t
n

+ ... + q
p
∆tp

p!

dpu

dtp

∣
∣
∣
∣
t
n

+ O(∆t
p+1

) (1.29)

and injecting (1.29) for q = −m, ..., m into the approximation (1.28), we have on the left-
hand side the derivative we want to approximate and on the right a sum of derivatives. We im-
pose that the sum of coefficients multiplying a derivative lower than order p be zero whereas
the sum of the coefficients multiplying the p-th derivative be one. This forms a set of p + 1

equations for the 2m + 1 unknown coefficients aq (q = −m, ..., m). All constraints can be
satisfied simultaneously only if we use a number 2m + 1 of points equal to or greater than
p + 1, i.e., 2m ≥ p. When there are more points than necessary, we can take advantage of
the remaining degrees of freedom to cancel the next few terms in the truncation errors. With
2m + 1 points we can then obtain a finite difference of order 2m− p + 1. For example, with
m = 1 and p = 1, we obtained (1.22), a second-order approximation of the first derivative,
and withm = 2 and p = 1, (1.26), a fourth-order approximation.

Let us now turn to the second derivative, a very common occurence, at least when consid-
ering spatial derivatives. With p = 2, m must be at least 1, i.e., 3 values of the function are
required as a minimum: 1 old, 1 current and 1 future values. Applying the preceding method,
we immediately obtain

d2u

dt2

∣
∣
∣
∣
tn

"

(
un−1 − 2un

+ un+1

∆t2

)

, (1.30)

4th order centered !nite-difference
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4th order centered 
!nite-difference

28 CHAPTER 1. INTRODUCTION

fewer than several points per period.
The design of the second-order difference was accomplished simply by inspection of a

Taylor series, a technique which cannot be extended to obtain higher-order approximations.
An alternate method exists to obtain in a systematic way finite-difference approximations to
any desired order, and it can be illustrated with the design of a fourth-order centered finite-
difference approximation of the first derivative. Expecting that higher-order approximations
need more information about a function in order to estimate its derivative at time tn, we will
combine values over a longer time interval, including tn−2, tn−1, tn, tn+1 and tn+2:
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Expanding un+2 and the other values around tn by Taylor series, we can write
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There are 5 coefficients, a−2 to a2, to be determined. Two conditions must be satisfied to
obtain an approximation that tends to the first derivative as∆t→ 0

a−2 + a−1 + a0 + a1 + a2 = 0,

(−2a−2 − a−1 + a1 + 2a2)∆t = 1.

After satisfying these two necessary conditions, we have three parameters that can be freely
chosen so as to obtain the highest possible level of accuracy. This is achieved by imposing
that the coefficients of the next three truncation errors be zero:

4a−2 + a−1 + a1 + 4a2 = 0

−8a−2 − a−1 + a1 + 8a2 = 0

16a−2 + a−1 + a1 + 16a2 = 0.

Equipped with 5 equations for 5 unknowns, we can proceed with the solution:



Higher-order methods 
Taylor series is not useful to derive higher order schemes 
(e.g. 4th order centered !nite-difference approximation of the !rst derivative)

Generalize this approach to derive any order scheme
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so that the fourth-order finite-difference approximation of the first derivative is:
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This formula can be interpreted as a linear combination of two centered differences, one
across 2∆t and the other across 4∆t. The truncation error can be assessed by looking at the
next term in the series (1.25)

(−32a−2 − a−1 + a1 + 32a2)
∆t5

120

d5u

dt5

∣
∣
∣
∣
t
n

= −
∆t4

30

d5u

dt5

∣
∣
∣
∣
t
n

, (1.27)

which shows that the approximation is indeed of fourth order.
The method can be generalized to approximate a derivative of any order p at time tn using

the current value un,m points in the past (before tn) andm points in the future (after tn):
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The discrete points n − m to n + m involved in the approximation define the so-called
numerical stencil of the operator.
Using a Taylor expansion for each term
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and injecting (1.29) for q = −m, ..., m into the approximation (1.28), we have on the left-
hand side the derivative we want to approximate and on the right a sum of derivatives. We im-
pose that the sum of coefficients multiplying a derivative lower than order p be zero whereas
the sum of the coefficients multiplying the p-th derivative be one. This forms a set of p + 1

equations for the 2m + 1 unknown coefficients aq (q = −m, ..., m). All constraints can be
satisfied simultaneously only if we use a number 2m + 1 of points equal to or greater than
p + 1, i.e., 2m ≥ p. When there are more points than necessary, we can take advantage of
the remaining degrees of freedom to cancel the next few terms in the truncation errors. With
2m + 1 points we can then obtain a finite difference of order 2m− p + 1. For example, with
m = 1 and p = 1, we obtained (1.22), a second-order approximation of the first derivative,
and withm = 2 and p = 1, (1.26), a fourth-order approximation.

Let us now turn to the second derivative, a very common occurence, at least when consid-
ering spatial derivatives. With p = 2, m must be at least 1, i.e., 3 values of the function are
required as a minimum: 1 old, 1 current and 1 future values. Applying the preceding method,
we immediately obtain
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Higher-order methods 
(e.g. 2nd order centered !nite-difference approximation of the 2nd derivative)
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Should we dream to avoid such a parameterization by explicitly calculating all scales,
we would need about M ∼ 1024 grid points demanding 5 × 1016 Gigabytes of computer
memory, and N ∼ 3× 10

7 time steps, for a total number of operations on the order of 10
34.

Willing to wait only for 106 seconds before obtaining the results, we would need a computer
delivering 1028 flops . This is a factor 1016 = 253 higher than the present capabilities, both
for speed and memory requirements. Using Moore’s Law, the celebrated rule that forecasts a
factor 2 in gain every 18 months, we would have to wait 53 times 18 months, i.e., for about
80 years before computers could handle such a task.

Increasing resolution will therefore continue to call for the most powerful computers
available, and models will need to include parameterization of turbulence or other unresolved
motions for quite some time. Grid spacing will thus remain a crucial aspect of all GFD
models, simply because of the large domain sizes and broad range of scales.

1.11 Higher-order methods
Rather than to increase resolution to better represent structures, we may wonder whether
using other approximations for derivatives than our simple finite difference (1.11) would
allow larger time-steps or higher quality approximations and improved model results. Based
on a Taylor series
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we can imagine that instead of using a forward difference approximation of the time derivative
(1.11) we try a backward Taylor series (1.20) to design a backward difference approximation.
This approximation is obviously still of first order because of its truncation error:
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Comparing (1.19) with (1.20), we observe that the truncation errors of the first-order
forward and backward finite differences are the same but have opposite signs, so that by
averaging both, we obtain a second-order truncation error (you can verify this statement by
taking the difference between (1.19) and (1.20)):
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Before considering higher-order approximations, let us first check whether the increase
in order of approximation actually leads to improved approximations of the derivatives. To
do so, consider the sinusoidal function of period T (and associated frequency ω)

u = U sin

(

2π
t

T

)

= U sin(ωt), ω =
2π

T
. (1.23)

... again from Taylor Series
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This formula can be interpreted as a linear combination of two centered differences, one
across 2∆t and the other across 4∆t. The truncation error can be assessed by looking at the
next term in the series (1.25)
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which shows that the approximation is indeed of fourth order.
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and injecting (1.29) for q = −m, ..., m into the approximation (1.28), we have on the left-
hand side the derivative we want to approximate and on the right a sum of derivatives. We im-
pose that the sum of coefficients multiplying a derivative lower than order p be zero whereas
the sum of the coefficients multiplying the p-th derivative be one. This forms a set of p + 1

equations for the 2m + 1 unknown coefficients aq (q = −m, ..., m). All constraints can be
satisfied simultaneously only if we use a number 2m + 1 of points equal to or greater than
p + 1, i.e., 2m ≥ p. When there are more points than necessary, we can take advantage of
the remaining degrees of freedom to cancel the next few terms in the truncation errors. With
2m + 1 points we can then obtain a finite difference of order 2m− p + 1. For example, with
m = 1 and p = 1, we obtained (1.22), a second-order approximation of the first derivative,
and withm = 2 and p = 1, (1.26), a fourth-order approximation.

Let us now turn to the second derivative, a very common occurence, at least when consid-
ering spatial derivatives. With p = 2, m must be at least 1, i.e., 3 values of the function are
required as a minimum: 1 old, 1 current and 1 future values. Applying the preceding method,
we immediately obtain
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2nd order centered !nite-difference
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Figure 1-16 Shortest wave (at cut-
off frequency π/∆t or period 2∆t) re-
solved by uniform grid in time.

Figure 1-17 Aliasing illustrated by sampling a given signal (gray sinusoidal curve) with an increasing
time interval. A high sampling rate (top row of images) resolves the signal properly. The boxed image
on the bottom row corresponds to the cut-off frequency, and the sampled signal appears as a seesaw.
The last two images correspond to excessively long time intervals that alias the signal, making it appear
as if it had a longer period than it actually has.

a given sampling interval ∆t (rather than a given frequency), we recognize that the highest
resolved frequency is π/∆t, called the cutoff frequency (Figure 1-16).

Should higher frequencies be present and sampled, aliasing inevitably occurs, as illus-
trated by a sinusoidal function sampled with increasingly fewer points per period (Figure
1-17). The reader is also invited to experiment with MATLAB™ script aliasanim.m. Up
to ∆t = T/2, the signal is recognizable, but, beyond, lines connecting consecutive sampled
values appear to tunnel through crests and troughs, giving the impression of a signal with
longer period.

Aliasing is a major concern, and the danger it poses is often underestimated. This is
because we do not know whether the signal being represented by the discretization scheme
contains frequencies higher than the cut-off frequency, precisely because variability at those
frequencies is not retained and computed. In geophysical situations, the time step and grid
spacing is most often set not by the physics of the problem but by computer-hardware limits.
This forces the modeler to discard variability at unresolved frequencies and wavelengths, and
creates aliasing. Methods to overcome the undesired effects of aliasing will be presented in

Understanding ALIASING 
To sample a wave of frequency ω the time step ∆t may not exceed 

∆tmax = π/ω = T/2

which implies that at least two samples of the signal must be taken per period. 
This minimum required sampling frequency is called the Nyquist frequency
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Numerical convergence and stability 

Consistency
discretized equation for increasing resolution is the exact equation.

Convergence
difference between the exact and discrete solutions tends to zero as ∆t 
vanishes.

Lax-Richtmyer equivalence theorem [lax and Richtmyer, 1956]
A consistent "nite-difference scheme for a linear partial differential equation 
for which the initial value problem is well posed is convergent if and only if it 
is stable.

Stability (a concept that has different de!nition in numerical methods)
An algorithm for solving a linear evolutionary partial differential 
equation is stable if the total variation of the numerical solution at a 
!xed time remains bounded as the step size goes to zero. 
(e.g. the energy of the system does not increase with every time step).
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Numerical stability 

2.6. OSCILLATIONS 51

Figure 2-10 Evidence of inertial os-
cillations in the Baltic Sea, as reported
by Gustafson and Kullenberg (1936).
The plot is a progressive–vector dia-
gram constructed by the successive ad-
dition of velocity measurements at a
fixed location. For weak or uniform
velocities, such a curve approximates
the trajectory that a particle starting at
the point of observation would have
followed during the period of obser-
vation. Numbers indicate days of the
month. Note the persistent veering to
the right, at a period of about 14 hours,
which is the value of 2π/f at that lat-
itude (57.8◦N). [From Gustafson and
Kullenberg, 1936, as adapted by Gill,
1982]
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+ f∆t ṽ
n (2.24a)

ṽ
n+1

= ṽ
n − f∆t ũ

n
. (2.24b)

Thus, given initial values ũ0 and ṽ0 at t0, the solution can be computed easily at time t1

ũ
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= ũ
0

+ f∆t ṽ
0 (2.25)

ṽ
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= ṽ
0 − f∆t ũ

0
. (2.26)

Then, by means of the same algorithm, the solution can be obtained iteratively at times t2, t3
and so on (do not confuse the temporal index with an exponent here and in the following).
Clearly, the main advantage of the preceding scheme is its simplicity, but it is not sufficient
to render it acceptable, as we shall soon learn.

To explore the numerical error generated by the Euler method, we carry out Taylor ex-
pansions of the type

ũ
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[
dũ

dt

]
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2
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d2ũ
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)

An example with the Euler Method

∆t=1
∆t=0.7

http://en.wikipedia.org/wiki/Euler_method 

stiff equation is a differential 
equation for which certain 

numerical methods for 
solving the equation are 

numerically unstable,



8.12: Stability behavior of Euler’s method

We consider the so-called linear test equation

ẏ(t) = �y(t)

where � 2 C is a system parameter which mimics the eigenvalues of linear
systems of di↵erential equations.

The equation is stable if Real(�)  0. In this case the solution is
exponentially decaying. (limt!1 y(t) = 0).

When is the numerically solution ui also decaying, limi!1 ui = 0?

C. Führer: FMN081-2005
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8.12: Stability behavior of Euler’s method (Cont.)

Explicit Euler discretization of linear test equation:

ui+1 = ui + h�ui

This gives ui+1 = (1 + h�)

i+1u0.

The solution is decaying (stable)
if |1 + h�|  1

-2

hλi

-i

C. Führer: FMN081-2005
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8.13: Stability behavior of Euler’s method (Cont.)

Implicit Euler discretization of linear test equation:

ui+1 = ui + h�ui+1

This gives ui+1 =

�
1

1�h�

�i+1
u0.

The solution is decaying (stable)
if |1� h�| � 1 2

hλ
i

-i

C. Führer: FMN081-2005
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8.14: Stability behavior of Euler’s method (Cont.)

Explicit Euler’s instability for fast decaying equations:

0 2 4 6 8 10 12 14

-10

-5

0

5

10 O�=-5 h=0.41 

C. Führer: FMN081-2005
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8.15: Stability behavior of Euler’s method (Cont.)

Facit:
For stable ODEs with a fast decaying solution (Real(�) << �1 )
or highly oscillatory modes (Im(�) >> 1 )
the explicit Euler method demands small step sizes.

This makes the method ine�cient for these so-called sti↵ systems.

Alternative: implicit Euler method.

C. Führer: FMN081-2005
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8.16: Implementation of implicit methods

Implicit Euler method ui+1 = ui + hif(ti+1, ui+1)

Two ways to solve for ui+1: k is the iteration counter, i the integration step counter

• Fixed point iteration: u
(k+1)
i+1 = ui + hif(ti+1, u

(k)
i+1)| {z }

='(u
(k)
i+1)

• Newton iteration:

ui+1 = ui + hif(ti+1, ui+1), ui+1 � ui � hif(ti+1, ui+1)| {z }
=F (ui+1)

= 0

F 0
(u

(k)
i+1)�ui+1 = �F (u

(k)
i+1) u

(k+1)
i+1 = u

(k)
i+1 + �ui+1

C. Führer: FMN081-2005
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8.17: Implementation of implicit methods (Cont.)

These iterations are performed at every integration step!
They are started with explicit Euler method as so-called predictor:

u
(0)
i+1 = ui + hif(ti, ui)

When should fixed points iteration and when Newton iteration be used?

The key is contractivity!

Let’s check the linear test equation again: ẏ = �y.

Contractivity: |'0
(u)| = |h�| < 1.

C. Führer: FMN081-2005
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8.18: Implementation of implicit methods (Cont.)

If the di↵erential equation is

• nonsti↵: explicit Euler or

• nonsti↵: implicit Euler with fixed point iteration

• sti↵: implicit Euler with Newton iteration

C. Führer: FMN081-2005
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0

lim
∆t→0

(
1

1− γ∆t

)
n

= ũ
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with t = n∆t.
Stability is thus a concept that should not only be related to the behavior of the discrete

solution, but also to the behavior of the exact solution. Loosely speaking, we will qualify a
numerical scheme as unstable if its solution grows much faster than the exact solution and,
likewise, overstable if its solution decreases much faster than the exact solution.

2.7.1 Formal stability definition
A mathematical definition of stability, one which allows the discrete solution to grow but
only to a certain extent, is as follows. If the discrete state variable is represented by an array
x (collecting into a single vector the values of all variables at all spatial grid points), which
is stepped in time by an algorithm based on the selected discretization, the corresponding
numerical scheme is said to be stable over a fixed time interval T if there exists a constant C
such that

‖xn ‖ ≤ C ‖x0 ‖ (2.38)

for all n∆t ≤ T . A scheme is thus stable if regardless of ∆t (≤ T ), the numerical solution
remains bounded for t ≤ T .

This definition of stability leaves the numerical solution quite some room for growth,
very often well beyond what a modeler is willing to tolerate. This definition of stability is,
however, the necessary and sufficient stability used in the lax-Richtmyer equivalence theorem
and thus allows us to verify convergence. If we permit a slower rate of growth in the numerical
solution, we will not destroy convergence. In particular, we could decide to use the so-called
strict stability condition.

2.7.2 Strict stability
For a system conserving one or several integral norms (such as total energy or wave action),
we may naturally impose that the corresponding norm of the numerical solution not grow at
all over time:

‖xn ‖ ≤ ‖x0 ‖ . (2.39)

Obviously, a scheme that is stable in the sense of (2.39) is also stable in the sense of
(2.38), while the inverse is not necessarily true. The more stringent definition (2.39) will
be called strict stability condition and refers to the condition that the norm of the numerical
solution is not allowed to increase at all.

2.7.3 Choice of a stability criterion
The choice of stability criterion will depend largely on the mathematical and physical prob-
lem at hand. For a wave-propagation problem, for example, strict stability will be the natural
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