Ocean Modeling - EAS 8803

The ocean is a geophysical fluid

- The goal of ocean modeling is to reproduce numerically the dynamics of the ocean
- Dynamics of the ocean include: mean and time varying circulation, waves, turbulence, instabilities, convection, mixing, jets, etc.
- Cannot do ocean modeling without understanding geophysical fluid dynamics and numerical methods!

Introduction to Geophysical Fluid Dynamics Physical and Numerical Aspects

Benoit Cushman-Roisin and Jean-Marie Beckers

Academic Press

The Ocean, a geophysical fluid

what scales of motion do we want to model?

large-scale

when considering the large-scale

stratifcation

rotation ©Coriolis Force

Centrifugal Force

Example of rotation effects

shortly after injection of dye

several revolutions later

Figure 1-3 Experimental evidence of the rigidity of a rapidly rotating, homogeneous fluid. In a spinning vessel filled with clear water, an initially amorphous cloud of aqueous dye is transformed in the course of several rotations into perfectly vertical sheets, known as *Taylor curtains*.

Scales of Motion

how do we characterize the scales of the ocean?

time, length, height, velocity T L H

different phenomena are characterized by different scales of motion

useful to *model only the scales of interest*

Jupiter Red Spot

Scales of Motion

The typical density of the ocean : $\rho_0 = 1025 \text{ kg/m}^3$

However density ρ of the ocean is not uniform, especially in the vertical.

$$\Delta \rho = 1 \text{ kg/m}^3$$

 $\frac{\Delta \rho}{\rho_0} << 1$ an approximation that we will use to simplify the dynamical equations of motion!

Importance of Rotation

$$\Omega = \frac{2\pi \text{ radians}}{\text{time of one revolution}} = 7.2921 \times 10^{-5} \text{ s}^{-1}.$$

What happens if fluid motion is comparable to the time of one revolution?

$$\omega = \frac{\text{time of one revolution}}{\text{motion time scale}} = \frac{2\pi/\Omega}{T} = \frac{2\pi}{\Omega T}$$

Rotation is important

 $\omega \stackrel{\rm if}{\lesssim} 1$

Importance of Rotation

what if $\omega \gtrsim 1$

rotation can still be important, effective timescale T = L/U

 $\epsilon = \frac{\text{time of one revolution}}{\text{time taken by particle to cover distance } L \text{ at speed } U}$ $= \frac{2\pi/\Omega}{L/U} = \frac{2\pi U}{\Omega L}.$ **Rossby number**

Table 1.1 LENGT PORTANT	I AND VELOCITY SCALES OF MOTIONS IN WHICH ROTATION EFFECTS ARE IM-			
IORIMUI	L = 1 m	$U \leq 0.012 \text{ mm/s}$		
	L = 10 m	$U \leq 0.12 \text{ mm/s}$		
	L = 100 m	$U \leq 1.2 \text{ mm/s}$		
	L = 1 km	$U \leq 1.2 \text{ cm/s}$		
	L = 10 km	$U \leq 12 \text{ cm/s}$		
	L = 100 km	$U \leq 1.2 \text{ m/s}$		
	L = 1000 km	$U \le 12 \text{ m/s}$		
	L = Earth radius = 6371 km	$U \leq$ 74 m/s		

Importance of Stratification

when do stratification effect play an important dynamical role?

Stratification *is* important

$$(\sigma \sim 1)$$

 $(\sigma \ll 1)$

Stratification is not important

 $(\sigma \gg 1)$

Importance of Stratification and Rotation

what happens when both rotation and stratification are important?

$$\epsilon \sim 1 \text{ and } \sigma \sim 1$$

$$\epsilon = \frac{2\pi U}{\Omega L} \qquad \sigma = \frac{\frac{1}{2}\rho_0 U^2}{\Delta \rho g H}$$

$$L \sim \frac{U}{\Omega}$$
 and $U \sim \sqrt{\frac{\Delta\rho}{\rho_0}}gH$

$$L \sim \frac{1}{\Omega} \sqrt{\frac{\Delta \rho}{\rho_0} g H}$$

Rossby deformation Radius Length scale over which motions take place

$L_{\text{atmosphere}}$	~ 5	$500~{ m km}$	$U_{\mathrm{atmosphere}}$	\sim	30 m/s
$L_{\rm ocean}$	\sim	$60~\mathrm{km}$	$U_{ m ocean}$	\sim	4 m/s

Typical Scales of Ocean and Atmosphere Phenomena

Table 1.2 LENGTH, VELOCITY AND TIME SCALES IN THE EARTH'S ATMOSPHERE AND OCEANS

Phenomenon	Length Scale	Velocity Scale	Time Scale
	L	U	T
Atmosphere:			
Microturbulence	10–100 cm	5–50 cm/s	few seconds
Thunderstorms	few km	1–10 m/s	few hours
Sea breeze	5–50 km	1–10 m/s	6 hours
Tornado	10–500 m	30–100 m/s	10–60 minutes
Hurricane	300–500 km	30–60 m/s	Days to weeks
Mountain waves	10–100 km	1–20 m/s	Days
Weather patterns	100–5000 km	1–50 m/s	Days to weeks
Prevailing winds	Global	5–50 m/s	Seasons to years
Climatic variations	Global	1–50 m/s	Decades and beyond
Ocean:			
Microturbulence	1–100 cm	1–10 cm/s	10–100 s
Internal waves	1–20 km	0.05–0.5 m/s	Minutes to hours
Tides	Basin scale	1–100 m/s	Hours
Coastal upwelling	1–10 km	0.1–1 m/s	Several days
Fronts	1–20 km	0.5–5 m/s	Few days
Eddies	5–100 km	0.1–1 m/s	Days to weeks
Major currents	50–500 km	0.5–2 m/s	Weeks to seasons
Large-scale gyres	Basin scale	0.01–0.1 m/s	Decades and beyond

Typical Scales of Ocean Processes

Modeling the Ocean and the Atmosphere

example of an early

CAVEAT ! The concept of numerical stability was not known until 1928 when it was elucidated by Richard Courant, Karl Friedrichs and Hans Lewy.

Figure 1-11 Time-scale analysis of a variable u. The time scale T is the time interval over which the variable u exhibits variations comparable to its standard deviation U.

Figure 1-12 Representation of a function by a finite number of sampled values and approximation of a first derivative by a finite difference over Δt .

Figure 1-13 Finite differencing with various Δt values. Only when the time step is sufficiently short compared to the time scale, $\Delta t \ll T$, is the finite-difference slope close to the derivative, *i.e.*, the true slope.

