
Ocean Modeling - EAS 8803
The ocean is a geophysical !uid

The goal of ocean modeling is to 
reproduce numerically the 
dynamics of the ocean

Dynamics of the ocean include: 
mean and time varying circulation, 
waves, turbulence, instabilities, 
convection, mixing, jets, etc.

Cannot do ocean modeling 
without understanding 
geophysical !uid dynamics and 
numerical methods!



The Ocean, a geophysical !uid

1.4. SCALES OF MOTIONS 7

Figure 1-3 Experimental evidence of

the rigidity of a rapidly rotating, ho-

mogeneous fluid. In a spinning ves-

sel filled with clear water, an initially

amorphous cloud of aqueous dye is

transformed in the course of several

rotations into perfectly vertical sheets,

known as Taylor curtains.

turbations generate internal waves, the three-dimensional analogue of surface waves, with

which we are all familiar. Large perturbations, especially those maintained over time, may

cause mixing and convection. For example, the prevailing winds in our atmosphere are man-

ifestations of the planetary convection driven by the pole-to-equator temperature difference.

It is worth mentioning the perplexing situation in which a boat may experience strong

resistance to forward motion while sailing under apparently calm conditions. This phe-

nomenon, called dead waters by mariners, was first documented by the Norwegian oceanog-

rapher Fridtjof Nansen, famous for his epic expedition on the Fram through the Arctic Ocean,

begun in 1893. Nansen reported the problem to his Swedish colleague Vagn Walfrid Ekman

who, after performing laboratory simulations (Ekman, 1904), affirmed that internal waves

were to blame. The scenario is as follows: During times of dead waters, Nansen must have

been sailing in a layer of relatively fresh water capping the more saline oceanic waters and

of thickness, coincidently, comparable to the ship draft; the ship created a wake of inter-

nal waves along the interface (Figure 1-4), unseen at the surface but radiating considerable

energy and causing the noted resistance to the forward motion of the ship.

1.4 Scales of motions

To discern whether a physical process is dynamically important in any particular situation,

geophysical fluid dynamicists introduce scales of motion. These are dimensional quantities

expressing the overall magnitude of the variables under consideration. They are estimates

rather than precisely defined quantities and are understood solely as orders of magnitude of

physical variables. In most situations, the key scales are those for time, length and velocity.

For example, in the dead-water situation investigated by Ekman (Figure 1-4), fluid motions

comprise a series of waves whose dominant wavelength is about the length of the submerged

ship hull; this length is the natural choice for the length scale L of the problem; likewise, the
ship speed provides a reference velocity that can be taken as the velocity scale U ; finally, the
time taken for the ship to travel the distance L at its speed U is the natural choice of time

scale: T = L/U .
As a second example, consider Hurricane Frances during her course over the southeast-

ern United States in early September 2004 (Figure 1-1). The satellite picture reveals a nearly

circular feature spanning approximately 7.5◦ of latitude (830 km). Sustained surface wind
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what scales of motion do we want to model?

when considering the large-scale

stratifcation

rotation
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Centrifugal Force

Example of rotation effects
large-scale



Scales of Motion

how do we characterize the scales of the ocean?

time, length, height, velocity
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different phenomena are characterized 
by different scales of motion

useful to model only the scales of interest
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Figure 1-5 Southern Hemisphere of Jupiter as seen by the spacecraft Cassini in 2000. The

Jupiter moon Io, of size comparable to our moon, projects its shadow onto the zonal jets

between which the Great Red Spot of Jupiter is located (on the left). For further im-

ages visit http://photojournal.jpl.nasa.gov/target/Jupiter. (Image courtesy of

NASA/JPL/University of Arizona)

Jupiter Red Spot

L=10,000	
  km
U=100	
  m/s



However density        of the ocean is not uniform, especially in the 
vertical. 

Scales of Motion

ρ
ρ0 = 1025 kg/m3The typical density of the ocean : 

Δρ
ρ0

<< 1

Δρ = 1 kg/m3

an approximation that we will use to 
simplify the dynamical equations of motion!
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problems. As we mentioned earlier, geophysical fluids generally exhibit a certain degree of

density heterogeneity, called stratification. The important parameters are then the average

density ρ0, the range of density variations ∆ρ, and the height H over which such density

variations occur. In the ocean, the weak compressibility of water under changes of pressure,

temperature, and salinity translates into values of∆ρ always much less than ρ0, whereas the

compressibility of air renders the selection of ∆ρ in atmospheric flows somewhat delicate.
Since geophysical flows are generally bounded in the vertical direction, the total depth of the

fluid may be substituted for the height scale H . Usually, the smaller of the two height scales
is selected.

As an example, the density and height scales in the dead-water problem (Figure 1-4) can

be chosen as follows: ρ0 = 1025 kg/m
3, the density of either fluid layer (almost the same);

∆ρ = 1 kg/m3, the density difference between lower and upper layers (much smaller than

ρ0); andH = 5 m, the depth of the upper layer.

As the person new to geophysical fluid dynamics has already realized, the selection of

scales for any given problem is more an art than a science. Choices are rather subjective. The

trick is to choose quantities that are relevant to the problem, yet simple to establish. There

is freedom. Fortunately, small inaccuracies are inconsequential because the scales are meant

only to guide in the clarification of the problem, whereas grossly inappropriate scales will

usually lead to flagrant contradictions. Practice, which forms intuition, is necessary to build

confidence.

1.5 Importance of rotation

Naturally, we may wonder at which scales the ambient rotation becomes an important factor

in controlling the fluid motions. To answer this question, we must first know the ambient

rotation rate, which we denote by Ω and define as:

Ω =
2π radians

time of one revolution
. (1.1)

Since our planet Earth actually rotates in two ways simultaneously, once per day about itself

and once a year around the sun, the terrestrial value of Ω consists of two terms, 2π/24 hours
+ 2π/365.24 days = 2π/1 sidereal day = 7.2921 × 10−5 s−1. The sidereal day, equal to 23

hours 56 minutes and 4.1 seconds, is the period of time spanning the moment when a fixed

(distant) star is seen one day and the moment on the next day when it is seen at the same

angle from the same point on Earth. It is slightly shorter than the 24–hour solar day, the time

elapsed between the sun reaching its highest point in the sky two consecutive times, because

the earth’s orbital motion about the sun makes the earth rotate slightly more than one full turn

with respect to distant stars before reaching the same Earth-Sun orientation.

If fluid motions evolve on a time scale comparable to or longer than the time of one

rotation, we anticipate that the fluid does feel the effect of the ambient rotation. We thus

define the dimensionless quantity

ω =
time of one revolution

motion time scale
=

2π/Ω

T
=

2π

ΩT
, (1.2)
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What happens if !uid motion is comparable to the time of one revolution?
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Table 1.1 LENGTH AND VELOCITY SCALES OF MOTIONS IN WHICH ROTATION EFFECTS ARE IM-

PORTANT

L = 1 m U ≤ 0.012 mm/s

L = 10 m U ≤ 0.12 mm/s

L = 100 m U ≤ 1.2 mm/s

L = 1 km U ≤ 1.2 cm/s

L = 10 km U ≤ 12 cm/s

L = 100 km U ≤ 1.2 m/s

L = 1000 km U ≤ 12 m/s

L = Earth radius = 6371 km U ≤ 74 m/s

where T is used to denote the time scale of the flow. Our criterion is as follows: If ω is on
the order of or less than unity (ω ! 1), rotation effects should be considered. On Earth, this
occurs when T exceeds 24 hours.

Yet, motions with shorter time scales (ω " 1) but sufficiently large spatial imprint could
also be influenced by rotation. A second and usually more useful criterion results from con-

sidering the velocity and length scales of the motion. Let us denote these by U and L,
respectively. Naturally, if a particle traveling at the speed U covers the distance L in a time
longer than or comparable to a rotation period, we expect the trajectory to be influenced by

the ambient rotation, and so we write

ε =
time of one revolution

time taken by particle to cover distance L at speed U

=
2π/Ω

L/U
=

2πU

ΩL
. (1.3)

If ε is on the order of or less than unity (ε ! 1), we conclude that rotation is important.

Let us now consider a variety of possible length scales, using the value Ω for Earth. The

corresponding velocity criteria are listed in Table 1.1.

Obviously, in most engineering applications, such as the flow of water at a speed of 5 m/s

in a turbine 1 m in diameter (ε ∼ 4 × 105) or the air flow past a 5-m wing on an airplane

flying at 100 m/s (ε ∼ 2 × 106), the inequality is not met, and the effects of rotation can be

ignored. Likewise, the common task of emptying a bathtub (horizontal scale of 1 m, draining

speed on the order of 0.01 m/s and a lapse of about 1000 s, giving ω ∼ 90 and ε ∼ 900) does
not fall under the scope of Geophysical Fluid Dynamics. On the contrary, geophysical flows

(such as an ocean current flowing at 10 cm/s and meandering over a distance of 10 km or a

wind blowing at 10 m/s in a 1000-km-wide anticyclonic formation) do meet the inequality.

This demonstrates that rotation is usually important in geophysical flows.

Rotation is important

if
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Figure 1-4 A laboratory experiment by V. W. Ekman (1904) showing internal waves generated by a

model ship in a tank filled with two fluids of different densities. The heavier fluid at the bottom has been

colored to make the interface visible. The model ship (the superstructure of which was drawn onto the

original picture to depict Fridtjof Nansen’s Fram) is towed from right to left, causing a wake of waves

on the interface. The energy consumed by the generation of these waves produces a drag that, for a real

ship, would translate into a resistance to forward motion. The absence of any significant surface wave

has prompted sailors to call such situations dead waters. (From Ekman, 1904, and adapted by Gill,

1982)

speeds of a category-4 hurricane such as Frances range from 59 to 69 m/s. In general, hur-

ricane tracks display appreciable change in direction and speed of propagation over 2-day

intervals. Altogether, these elements suggest the following choice of scales for a hurricane:

L = 800 km, U = 60 m/s and T = 2 × 105 s (= 55.6 h).

As a third example, consider the famous Great Red Spot in Jupiter’s atmosphere (Figure

1-5), which is known to have existed at least several hundred years. The structure is an

elliptical vortex centered at 22◦S and spanning approximately 12◦ in latitude and 25◦ in

longitude; its highest wind speeds exceed 110 m/s, and the entire feature slowly drifts zonally

at a speed of 3 m/s (Ingersoll et al., 1979; Dowling and Ingersoll, 1988). Knowing that the

planet’s equatorial radius is 71,400 km, we determine the vortex semi-major and semi-minor

axes (14,400 km and 7,500 km, respectively) and deem L = 10,000 km to be an appropriate
length scale. A natural velocity scale for the fluid is U = 100 m/s. The selection of a time

scale is somewhat problematic in view of the nearly steady state of the vortex; one choice is

the time taken by a fluid particle to cover the distance L at the speed U (T = L/U = 105

s), whereas another is the time taken by the vortex to drift zonally over a distance equal to

its longitudinal extent (T = 107 s). Additional information on the physics of the problem is

clearly needed before selecting a time scale. Such ambiguity is not uncommon because many

natural phenomena vary on different temporal scales (e.g., the terrestrial atmosphere exhibits

daily weather variation as well as decadal climatic variations, among others). The selection

of a time scale then reflects the particular choice of physical processes being investigated in

the system.

There are three additional scales that play important roles in analyzing geophysical fluid
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This demonstrates that rotation is usually important in geophysical flows.

rotation can still be important, effective timescale
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Rossby number



Importance of Strati"cation

when do strati"cation effect play an important dynamical role?
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Figure 1-6 Vertical profile of density

in the northern Adriatic Sea (43◦32′N,

14◦03′E) on 27 May 2003. Den-

sity increases downward by leaps and

bounds, revealing the presence of dif-

ferent water masses stacked on top of

one another in such a way that lighter

waters float above denser waters. A re-

gion where the density increases sig-

nificantly faster than above and below,

marking the transition from one water

mass to the next, is called a pycnocline.

(Data courtesy of Drs. Hartmut Peters

and Mirko Orlić)

1.6 Importance of stratification

The next question concerns the condition under which stratification effects are expected to

play an important dynamical role. Geophysical fluids typically consist of fluid masses of dif-

ferent densities, which under gravitational action tend to arrange themselves in vertical stacks

(Figure 1-6), corresponding to a state of minimal potential energy. But, motions continuously

disturb this equilibrium, tending to raise dense fluid and lower light fluid. The correspond-

ing increase of potential energy is at the expense of kinetic energy, thereby slowing the flow.

On occasions, the opposite happens: Previously disturbed stratification returns toward equi-

librium, potential energy converts into kinetic energy, and the flow gains momentum. In

sum, the dynamical importance of stratification can be evaluated by comparing potential and

kinetic energies.

If∆ρ is the scale of density variations in the fluid andH is its height scale, a prototypical

perturbation to the stratification consists in raising a fluid element of density ρ0 + ∆ρ over
the height H and, in order to conserve volume, lowering a lighter fluid element of density

ρ0 over the same height. The corresponding change in potential energy, per unit volume, is

(ρ0+∆ρ) gH − ρ0gH = ∆ρgH . With a typical fluid velocity U , the kinetic energy available
per unit volume is 1

2ρ0U2. Accordingly, we construct the comparative energy ratio

σ =
1
2ρ0U2

∆ρgH
, (1.4)

to which we can give the following interpretation. If σ is on the order of unity (σ ∼ 1),
a typical potential-energy increase necessary to perturb the stratification consumes a sizable

portion of the available kinetic energy, thereby modifying the flow field substantially. Strati-

fication is then important. If σ is much less than unity (σ # 1), there is insufficient kinetic
energy to perturb significantly the stratification, and the latter greatly constrains the flow. Fi-

nally, if σ is much greater than unity (σ $ 1), potential-energy modifications occur at very
little cost to the kinetic energy, and stratification hardly affects the flow. In conclusion, strati-
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(Figure 1-6), corresponding to a state of minimal potential energy. But, motions continuously

disturb this equilibrium, tending to raise dense fluid and lower light fluid. The correspond-

ing increase of potential energy is at the expense of kinetic energy, thereby slowing the flow.

On occasions, the opposite happens: Previously disturbed stratification returns toward equi-

librium, potential energy converts into kinetic energy, and the flow gains momentum. In

sum, the dynamical importance of stratification can be evaluated by comparing potential and

kinetic energies.

If∆ρ is the scale of density variations in the fluid andH is its height scale, a prototypical

perturbation to the stratification consists in raising a fluid element of density ρ0 + ∆ρ over
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Importance of Strati"cation and Rotation

what happens when both rotation and strati"cation are important?

1.7. DISTINCTION 13

fication effects cannot be ignored in the first two cases – that is, when the dimensionless ratio

defined in (1.4) is on the order of or much less than unity (σ ! 1). In other words, σ is to
stratification what the number ε, defined in (1.3), is to rotation.

A most interesting situation arises in geophysical fluids when rotation and stratification

effects are simultaneously important, yet neither dominates over the other. Mathematically,

this occurs when ε ∼ 1 and σ ∼ 1 and yields the following relations among the various
scales:

L ∼
U

Ω
and U ∼

√

∆ρ

ρ0
gH . (1.5)

(The factors 2π and 1
2 have been omitted because they are secondary in a scale analysis.)

Elimination of the velocity U yields a fundamental length scale:

L ∼
1

Ω

√

∆ρ

ρ0
gH . (1.6)

In a given fluid, of mean density ρ0 and density variation ∆ρ, occupying a height H on a

planet rotating at rate Ω and exerting a gravitational acceleration g, the scale L arises as a

preferential length over which motions take place. On Earth (Ω = 7.29 × 10−5 s−1 and g
= 9.81 m/s2), typical conditions in the atmosphere (ρ0 = 1.2 kg/m

3, ∆ρ = 0.03 kg/m3, H =

5000 m) and in the ocean (ρ0 = 1028 kg/m
3,∆ρ = 2 kg/m3,H = 1000 m) yield the following

natural length and velocity scales:

Latmosphere ∼ 500 km Uatmosphere ∼ 30 m/s
Locean ∼ 60 km Uocean ∼ 4 m/s

Although these estimates are relatively crude, we can easily recognize here the typical size

and wind speed of weather patterns in the lower atmosphere and the typical width and speed

of major currents in the upper ocean.

1.7 Distinction between the atmosphere and oceans

Generally, motions of the air in our atmosphere and of seawater in the oceans that fall under

the scope of geophysical fluid dynamics occur on scales of several kilometers up to the size

of the earth. Atmospheric phenomena comprise the coastal sea breeze, local to regional pro-

cesses associated with topography, the cyclones, anticyclones, and fronts that form our daily

weather, the general atmospheric circulation, and climatic variations. Oceanic phenomena

of interest include estuarine flow, coastal upwelling and other processes associated with the

presence of a coast, large eddies and fronts, major ocean currents such as the Gulf Stream,

and the large-scale circulation. Table 1.2 lists the typical velocity, length and time scales of

these motions, while Figure 1-7 ranks a sample of atmospheric and oceanic processes accord-

ing to their spatial and temporal scales. As we can readily see, the general rule is that oceanic

motions are slower and slightly more confined than their atmospheric counterparts. Also, the

ocean tends to evolve more slowly than the atmosphere.

1.5. ROTATION 11

Table 1.1 LENGTH AND VELOCITY SCALES OF MOTIONS IN WHICH ROTATION EFFECTS ARE IM-

PORTANT

L = 1 m U ≤ 0.012 mm/s

L = 10 m U ≤ 0.12 mm/s

L = 100 m U ≤ 1.2 mm/s

L = 1 km U ≤ 1.2 cm/s

L = 10 km U ≤ 12 cm/s

L = 100 km U ≤ 1.2 m/s

L = 1000 km U ≤ 12 m/s

L = Earth radius = 6371 km U ≤ 74 m/s

where T is used to denote the time scale of the flow. Our criterion is as follows: If ω is on
the order of or less than unity (ω ! 1), rotation effects should be considered. On Earth, this
occurs when T exceeds 24 hours.

Yet, motions with shorter time scales (ω " 1) but sufficiently large spatial imprint could
also be influenced by rotation. A second and usually more useful criterion results from con-

sidering the velocity and length scales of the motion. Let us denote these by U and L,
respectively. Naturally, if a particle traveling at the speed U covers the distance L in a time
longer than or comparable to a rotation period, we expect the trajectory to be influenced by

the ambient rotation, and so we write

ε =
time of one revolution

time taken by particle to cover distance L at speed U

=
2π/Ω

L/U
=

2πU

ΩL
. (1.3)

If ε is on the order of or less than unity (ε ! 1), we conclude that rotation is important.

Let us now consider a variety of possible length scales, using the value Ω for Earth. The

corresponding velocity criteria are listed in Table 1.1.

Obviously, in most engineering applications, such as the flow of water at a speed of 5 m/s

in a turbine 1 m in diameter (ε ∼ 4 × 105) or the air flow past a 5-m wing on an airplane

flying at 100 m/s (ε ∼ 2 × 106), the inequality is not met, and the effects of rotation can be

ignored. Likewise, the common task of emptying a bathtub (horizontal scale of 1 m, draining

speed on the order of 0.01 m/s and a lapse of about 1000 s, giving ω ∼ 90 and ε ∼ 900) does
not fall under the scope of Geophysical Fluid Dynamics. On the contrary, geophysical flows

(such as an ocean current flowing at 10 cm/s and meandering over a distance of 10 km or a

wind blowing at 10 m/s in a 1000-km-wide anticyclonic formation) do meet the inequality.

This demonstrates that rotation is usually important in geophysical flows.
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1.6 Importance of stratification

The next question concerns the condition under which stratification effects are expected to

play an important dynamical role. Geophysical fluids typically consist of fluid masses of dif-

ferent densities, which under gravitational action tend to arrange themselves in vertical stacks

(Figure 1-6), corresponding to a state of minimal potential energy. But, motions continuously

disturb this equilibrium, tending to raise dense fluid and lower light fluid. The correspond-

ing increase of potential energy is at the expense of kinetic energy, thereby slowing the flow.

On occasions, the opposite happens: Previously disturbed stratification returns toward equi-

librium, potential energy converts into kinetic energy, and the flow gains momentum. In

sum, the dynamical importance of stratification can be evaluated by comparing potential and

kinetic energies.

If∆ρ is the scale of density variations in the fluid andH is its height scale, a prototypical

perturbation to the stratification consists in raising a fluid element of density ρ0 + ∆ρ over
the height H and, in order to conserve volume, lowering a lighter fluid element of density

ρ0 over the same height. The corresponding change in potential energy, per unit volume, is

(ρ0+∆ρ) gH − ρ0gH = ∆ρgH . With a typical fluid velocity U , the kinetic energy available
per unit volume is 1

2ρ0U2. Accordingly, we construct the comparative energy ratio

σ =
1
2ρ0U2

∆ρgH
, (1.4)

to which we can give the following interpretation. If σ is on the order of unity (σ ∼ 1),
a typical potential-energy increase necessary to perturb the stratification consumes a sizable

portion of the available kinetic energy, thereby modifying the flow field substantially. Strati-

fication is then important. If σ is much less than unity (σ # 1), there is insufficient kinetic
energy to perturb significantly the stratification, and the latter greatly constrains the flow. Fi-

nally, if σ is much greater than unity (σ $ 1), potential-energy modifications occur at very
little cost to the kinetic energy, and stratification hardly affects the flow. In conclusion, strati-
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(ρ0+∆ρ) gH − ρ0gH = ∆ρgH . With a typical fluid velocity U , the kinetic energy available
per unit volume is 1

2ρ0U2. Accordingly, we construct the comparative energy ratio
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1
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∆ρgH
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to which we can give the following interpretation. If σ is on the order of unity (σ ∼ 1),
a typical potential-energy increase necessary to perturb the stratification consumes a sizable

portion of the available kinetic energy, thereby modifying the flow field substantially. Strati-

fication is then important. If σ is much less than unity (σ # 1), there is insufficient kinetic
energy to perturb significantly the stratification, and the latter greatly constrains the flow. Fi-
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In a given fluid, of mean density ρ0 and density variation ∆ρ, occupying a height H on a

planet rotating at rate Ω and exerting a gravitational acceleration g, the scale L arises as a

preferential length over which motions take place. On Earth (Ω = 7.29 × 10−5 s−1 and g
= 9.81 m/s2), typical conditions in the atmosphere (ρ0 = 1.2 kg/m

3, ∆ρ = 0.03 kg/m3, H =

5000 m) and in the ocean (ρ0 = 1028 kg/m
3,∆ρ = 2 kg/m3,H = 1000 m) yield the following

natural length and velocity scales:

Latmosphere ∼ 500 km Uatmosphere ∼ 30 m/s
Locean ∼ 60 km Uocean ∼ 4 m/s

Although these estimates are relatively crude, we can easily recognize here the typical size

and wind speed of weather patterns in the lower atmosphere and the typical width and speed

of major currents in the upper ocean.

1.7 Distinction between the atmosphere and oceans

Generally, motions of the air in our atmosphere and of seawater in the oceans that fall under

the scope of geophysical fluid dynamics occur on scales of several kilometers up to the size

of the earth. Atmospheric phenomena comprise the coastal sea breeze, local to regional pro-

cesses associated with topography, the cyclones, anticyclones, and fronts that form our daily

weather, the general atmospheric circulation, and climatic variations. Oceanic phenomena

of interest include estuarine flow, coastal upwelling and other processes associated with the

presence of a coast, large eddies and fronts, major ocean currents such as the Gulf Stream,

and the large-scale circulation. Table 1.2 lists the typical velocity, length and time scales of

these motions, while Figure 1-7 ranks a sample of atmospheric and oceanic processes accord-

ing to their spatial and temporal scales. As we can readily see, the general rule is that oceanic

motions are slower and slightly more confined than their atmospheric counterparts. Also, the

ocean tends to evolve more slowly than the atmosphere.
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Table 1.2 LENGTH, VELOCITY AND TIME SCALES IN THE EARTH’S ATMOSPHERE AND OCEANS

Phenomenon Length Scale Velocity Scale Time Scale

L U T

Atmosphere:

Microturbulence 10–100 cm 5–50 cm/s few seconds

Thunderstorms few km 1–10 m/s few hours

Sea breeze 5–50 km 1–10 m/s 6 hours

Tornado 10–500 m 30–100 m/s 10–60 minutes

Hurricane 300–500 km 30–60 m/s Days to weeks

Mountain waves 10–100 km 1–20 m/s Days

Weather patterns 100–5000 km 1–50 m/s Days to weeks

Prevailing winds Global 5–50 m/s Seasons to years

Climatic variations Global 1–50 m/s Decades and beyond

Ocean:

Microturbulence 1–100 cm 1–10 cm/s 10–100 s

Internal waves 1–20 km 0.05–0.5 m/s Minutes to hours

Tides Basin scale 1–100 m/s Hours

Coastal upwelling 1–10 km 0.1–1 m/s Several days

Fronts 1–20 km 0.5–5 m/s Few days

Eddies 5–100 km 0.1–1 m/s Days to weeks

Major currents 50–500 km 0.5–2 m/s Weeks to seasons

Large-scale gyres Basin scale 0.01–0.1 m/s Decades and beyond

Besides notable scale disparities, the atmosphere and oceans also have their own pecu-

liarities. For example, a number of oceanic processes are caused by the presence of lateral

boundaries (continents, islands), a constraint practically non-existent in the atmosphere, ex-

cept in stratified flows where mountain ridges can sometimes play such a role, exactly as do

mid-ocean ridges for stratified ocean currents. On the other hand, atmospheric motions are

sometimes strongly dependent on the moisture content of the air (clouds, precipitation), a

characteristic without oceanic counterpart.

Flow patterns in the atmosphere and oceans are generated by vastly different mechanisms.

By and large, the atmosphere is thermodynamically driven, that is, its primary source of

energy is the solar radiation. Briefly, this shortwave solar radiation traverses the air layer to

be partially absorbed by the continents and oceans, which in turn re-emit a radiation at longer

wavelengths. This second-hand radiation effectively heats the atmosphere from below, and

the resulting convection drives the winds.

In contrast, the oceans are forced by a variety of mechanisms. In addition to the periodic

gravitational forces of the moon and sun that generate the tides, the ocean surface is subjected

to a wind stress that drives most ocean currents. Finally, local differences between air and

sea temperatures generate heat fluxes, evaporation, and precipitation, which in turn act as

thermodynamical forcings capable of modifying the wind-driven currents or of producing

additional currents.

In passing, while we are contrasting the atmosphere with the oceans, it is appropriate

to mention an enduring difference in terminology. Because meteorologists and laypeople

Typical Scales of Ocean and Atmosphere Phenomena
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Figure 1-7 Various types of processes and structures in the atmosphere (top panel) and oceans (bottom

panel), ranked according to their respective length and time scales. (Diagram courtesy of Hans von

Storch)

Typical Scales of Ocean Processes
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Figure 1-8 Model grid used by Lewis Fry Richardson as reported in his 1922 bookWeather Prediction

by Numerical Process. The grid was designed to optimize the fit between cells and existing meteoro-

logical stations, with observed surface pressures being used at the center of every shaded cell and winds

at the center of every white cell.
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Complex differential equations

Set of arithmetic operations

step by step method of solution 
(model time-stepping) 
at selected points in space 
(model spatial grid)

example of an early 
computation (1928)
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Figure 1-9 Historical improvement of weather forecasting skill over North America. The S1 score

shown here is a measure of the relative error in the pressure gradient predictions at mid-height in the

troposphere. (From Kalnay et al., 1998, reproduction with the kind permission of the American Meteo-

rological Society)

tions (additions, subtractions, multiplications and divisions exclusively) so that a step-by-step

method of solution may be followed and performed by people not necessarily trained in me-

teorology. Such reduction could be accomplished, he reasoned, by seeking the solution at

only selected points in the domain and by approximating spatial derivatives of the unknown

variables by finite differences across those points. Likewise, time could be divided into finite

intervals and temporal derivatives approximated as differences across those time intervals.

And thus was born numerical analysis. Richardson’s work culminated in his 1922 book enti-

tledWeather Prediction by Numerical Process. His first grid, to forecast weather over western

Europe, is reproduced here as Figure 1-8. After the equations of motion had been dissected

into a sequence of individual arithmetic operations, the first algorithm before the word ex-

isted, computations were performed by a large group of people, called computers, sitting

around an auditorium equipped with slide rules and passing their results to their neighbors.

Synchronization was accomplished by a leader in the pit of the auditorium as a conductor

leads an orchestra. Needless to say, the work was tedious and slow, requiring an impracti-

cally large number of people to conduct the calculations quickly enough so that a 24-hour

forecast could be obtained in less than 24 hours.

Despite an enormous effort on Richardson’s part, the enterprise was a failure, with pre-

dicted pressure variations rapidly drifting away from meteorologically acceptable values. In

retrospective, we now know that Richardson’s model was improperly initiated for lack of

upper-level data and that its six-hour time step was exceeding the limit required by numeri-

cal stability, of which, of course, he was not aware. The concept of numerical stability was

not known until 1928 when it was elucidated by Richard Courant, Karl Friedrichs and Hans

Lewy.

The work of Richardson was abandoned and relegated to the status of a curiosity or, as

he put it himself, “a dream”, only to be picked up again seriously at the advent of electronic

CAVEAT !
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Figure 1-11 Time-scale analysis of a

variable u. The time scale T is the time
interval over which the variable u ex-
hibits variations comparable to its stan-

dard deviation U .

significantly over a time scale T by a typical value U (Figure 1-11). With this definition of

scales, the time derivative is on the order of

du

dt
∼

U

T
. (1.7)

If we then assume that the time scale over which the function u changes is also the one over
which its derivative changes (in other words, we assume the time scale T to be representa-

tive of all type of variabilities, including derived fields), we can also estimate the order of

magnitude of variations of the second derivative

d2u

dt2
=

d

dt

(
du

dt

)

∼
U/T

T
=

U

T 2
, (1.8)

and so on for higher-order derivatives. This approach is the basis for estimating the relative

importance of different terms in time-marching equations, an exercise we will repeat several

times in the next chapters.

We now turn our attention to the question of estimating derivatives with more accuracy

than by a mere order of magnitude. Typically, this problem arises upon discretizing equations,

a process by which all derivatives are replaced by algebraic approximations based on a few

discrete values of the function u (Figure 1-12). Such discretization is necessary because
computers possess a finite memory and are incapable of manipulating derivatives. We then

face the following problem: Having stored only a few values of the function, how can we

retrieve the value of the function’s derivatives that appear in the equations?

u

t

∆t

tn tn+1

Slope approximation

%%

&
'

Discrete values

Real slope
(

Continuous function

Figure 1-12 Representation of a func-

tion by a finite number of sampled val-

ues and approximation of a first deriva-

tive by a finite difference over ∆t.

First, it is necessary to discretize the independent variable time t, since the first dynamical
equations that we shall solve numerically are time-evolving equations. For simplicity, we
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Figure 1-13 Finite differencing with

various ∆t values. Only when the time
step is sufficiently short compared to

the time scale, ∆t ! T , is the finite-
difference slope close to the derivative,

i.e., the true slope.

vertical grid space ∆z is constrained by the vertical length scale H of the variable under

investigation:

∆x ! L, ∆z ! H. (1.16)

With these constraints on time-steps and grid sizes, we can begin to understand the need

for significant computer resources in GFD simulations: The number of grid pointsM in a 3D

domain of surface S and heightH is

M =
H

∆z

S

∆x2
, (1.17)

while the total number of time steps N needed to cover a time period P is

N =
P

∆t
. (1.18)

For a model covering the Atlantic Ocean (S ∼ 1014m2), resolving geostrophic eddies

(see Figure 1-7: ∆x ∼ ∆y ≤ 104 m) and stratified water masses (H/∆z ∼ 50) the number
of grid points is aboutM ∼ 5 × 107. Then, at each of these points, several variables need to

be stored and calculated (three-dimensional velocity, pressure, temperature etc.). Since each

variable takes 4 or 8 bytes of memory depending on the desired number of significant digits,

2 Gigabytes of RAM is required. The number of floating point operations to be executed to

simulate a single year can be estimated by taking a time-step resolving the rotational period

of Earth ∆t ∼ 103 s, leading to N ∼ 30000 time steps. The total number of operations to
simulate a full year can then be estimated by observing that for every grid point and time

step, a series of calculations must be performed (typically several hundreds), so that the total

number of calculations amounts to 1014 − 1015. Therefore, on a contemporary supercom-

puter (one of the top 500 machines) with 1 Teraflops = 1012 floating operations per second

exclusively dedicated to the simulation, less than half an hour would pass before the response

is available, while on a high-end PC (1-2 Gigaflops), we would need to wait several days

before getting our results. And yet, even with such a large model, we can only resolve the

largest scales of motion (see Figure 1-7), while motions on shorter spatial and temporal scales

simply cannot be simulated with this level of grid resolution. This does not mean, however,

that those shorter-scale motions may altogether be neglected and, as we will see (e.g., Chap-

ter 14), one of the problems of large-scale oceanic and atmospheric models is the need for

appropriate parameterization of shorter-scale motions so that they may properly bear their

effects onto the larger-scale motions.
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Figure 1-16 Shortest wave (at cut-

off frequency π/∆t or period 2∆t) re-
solved by uniform grid in time.

Figure 1-17 Aliasing illustrated by sampling a given signal (gray sinusoidal curve) with an increasing

time interval. A high sampling rate (top row of images) resolves the signal properly. The boxed image

on the bottom row corresponds to the cut-off frequency, and the sampled signal appears as a seesaw.

The last two images correspond to excessively long time intervals that alias the signal, making it appear

as if it had a longer period than it actually has.

a given sampling interval ∆t (rather than a given frequency), we recognize that the highest
resolved frequency is π/∆t, called the cutoff frequency (Figure 1-16).

Should higher frequencies be present and sampled, aliasing inevitably occurs, as illus-

trated by a sinusoidal function sampled with increasingly fewer points per period (Figure

1-17). The reader is also invited to experiment with MATLAB™ script aliasanim.m. Up

to ∆t = T/2, the signal is recognizable, but, beyond, lines connecting consecutive sampled
values appear to tunnel through crests and troughs, giving the impression of a signal with

longer period.

Aliasing is a major concern, and the danger it poses is often underestimated. This is

because we do not know whether the signal being represented by the discretization scheme

contains frequencies higher than the cut-off frequency, precisely because variability at those

frequencies is not retained and computed. In geophysical situations, the time step and grid

spacing is most often set not by the physics of the problem but by computer-hardware limits.

This forces the modeler to discard variability at unresolved frequencies and wavelengths, and

creates aliasing. Methods to overcome the undesired effects of aliasing will be presented in

increasesΔt

increasesΔt


