Ocean Modeling - EAS 8803

The ocean is a geophysical fluid Introduction to
Geophysical Fluid Dynamics

Physical and Numerical Aspects

The goal of ocean modeling is to
reproduce numerically the
dynamics of the ocean

Dynamics of the ocean include:
mean and time varying circulation,
waves, turbulence, instabilities,
convection, mixing, jets, etc.

Cannot do ocean modeling
without understanding
geophysical fluid dynamics and Academic Press
numerical methods!

Benoit Cushman-Roisin and Jean-Marie Beckers



The Ocean, a geophysical fluid
what scales of motion do we want to model?

large-scale
Example of rotation effects

when considering the large-scale

stratifcation
rotation
@Coriolis Force shortly after several revolutions
injection of dye later
Centri f uga [ Force Figure 1-3 Experimental evidence of

the rigidity of a rapidly rotating, ho-
mogeneous fluid. In a spinning ves-
sel filled with clear water, an initially
amorphous cloud of aqueous dye is
transformed in the course of several
rotations into perfectly vertical sheets,
known as Taylor curtains.



Scales of Motion

how do we characterize the scales of the ocean?

time, length, height, velocity
T L H

U

Jupiter Red Spot

different phenomena are characterized
by different scales of motion

. L=10,000 km
useful to model only the scales of interest U=100 m/s



Scales of Motion

The typical density of the ocean : Py = 1025 kg/ln3

However density p of the ocean 1s not uniform, especially in the

vertical. 3
Ap =1kg/m

A
_p<<1

p() an approximation that we will use to
simplify the dynamical equations of motion!



Importance of Rotation

0 = 2m radians — 72921 x 10~° s~

time of one revolution

What happens if fluid motion 1s comparable to the time of one revolution?

time of one revolution 27 /) 27
w p— - - p— p— _—
motion time scale T QT

Rotation is important

v <1

MY



Importance of Rotation

what if W Z 1

rotation can still be important, effective timescale [’ = L/U

time of one revolution

© 7 time taken by particle to cover distance L at speed U
2 12U 1 Rossby number
L/U | QL y

Table 1.1 LENGTH AND VELOCITY SCALES OF MOTIONS IN WHICH ROTATION EFFECTS ARE IM-
PORTANT

L=1m U <0.012 mm/s
L=10m U <0.12 mm/s
L =100 m U < 1.2 mm/s
L=1km U<1.2cm/s

L =10km U <12cm/s

L =100 km U<1.2m/s

L = 1000 km U <12m/s

L = Earth radius = 6371 km U <74 m/s




Importance of Stratification

when do stratification effect play an important dynamical role?

Kinetic Energy (KE)

o = poU?
- ApgH

N\

Available Potential Energy (APE)

Stratification 7is important Stratification is not important
(0 ~ 1)

(c < 1) (0> 1)



Importance of Stratification and Rotation

what happens when both rotation and stratification are important?

e ~ land o ~ 1

2mU %poUz
€= o=
QL ApgH
and U ~ \/&gH
Lo

Rossby deformation

Radius
Length scale over which

motions take place

Latmosphere ~ 500 km Uatmosphere ~ 30 m/s
Locean ~ 60 km Uocean ~ 4 m/s




Typical Scales of Ocean and Atmosphere Phenomena

Table 1.2 LENGTH, VELOCITY AND TIME SCALES IN THE EARTH’S ATMOSPHERE AND OCEANS

Phenomenon Length Scale  Velocity Scale Time Scale

L U T
Atmosphere:
Microturbulence 10-100 cm 5-50 cm/s few seconds
Thunderstorms few km 1-10 m/s few hours
Sea breeze 5-50 km 1-10 m/s 6 hours
Tornado 10-500 m 30—-100 m/s 10—60 minutes
Hurricane 300-500 km  30-60 m/s Days to weeks
Mountain waves 10-100 km 1-20 m/s Days
Weather patterns 100-5000 km  1-50 m/s Days to weeks
Prevailing winds Global 5-50 m/s Seasons to years
Climatic variations Global 1-50 m/s Decades and beyond
Ocean:
Microturbulence 1-100 cm 1-10 cm/s 10-100 s
Internal waves 1-20 km 0.05-0.5m/s  Minutes to hours
Tides Basin scale 1-100 m/s Hours
Coastal upwelling  1-10 km 0.1-1 m/s Several days
Fronts 1-20 km 0.5-5 m/s Few days
Eddies 5-100 km 0.1-1 m/s Days to weeks
Major currents 50-500 km 0.5-2 m/s Weeks to seasons
Large-scale gyres  Basin scale 0.01-0.1 m/s  Decades and beyond




Typical Scales of Ocean Processes
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Modeling the Ocean and the Atmosphere

Complex differential equations

Set of arithmetic operations

step by step method of solution
(model time-stepping)

at selected points in space
(model spatial grid)

Lewy.

example of an early

computation (1 928)
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Model grid used by Lew1s Fry Richardson

CAVEAT ! The concept of numerical stability was
not known until 1928 when it was elucidated by Richard Courant, Karl Friedrichs and Hans




Figure 1-11 Time-scale analysis of a
variable u. The time scale 7' 1s the time
interval over which the variable u ex-
hibits variations comparable to its stan-

t dard deviation U.

U
Slope approximation : :
peapp Continuous function
Real slop At /
. -
° ‘ Figure 1-12 Representation of a func-
) tion by a finite number of sampled val-
Discrete values . ues and approximation of a first deriva-

g gt ¢ tive by a finite difference over At.



At > T

\

Figure 1-13 Finite differencing with
various At values. Only when the time
step is sufficiently short compared to
the time scale, At < T, is the finite-
difference slope close to the derivative,
i.e., the true slope.






