
EAS Ocean Modeling   |   Homework #4      Diffusion & Advection

Based on the numerical theory developed in chapter 5 and 6 of the book implement the 
following examples:

2D Diffusion Algorithm

Implement a rectangular domain and solve the following problems:

Initial condition problem #1 The diffusion of a circular blob of tracer placed in the middle 
of the domain.

Boundary condition problem #2 The diffusion of a tracer from the boundary.

For both of these cases try an implicit and explicit scheme. For the explicitly scheme try 
different parameter setting to explore the different stability conditions of the scheme as 
shown in the figure below from the book. Plot the solution as different time frame to show 136 CHAPTER 5. DIFFUSIVE PROCESSES
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Figure 5-11 Different paths to convergence in the (∆z2, ∆t) plane for the explicit scheme. For
excessive values of ∆t, D ≥ 1/2, the scheme is unstable. Convergence can only be obtained by
remaining within the stability region. When ∆t alone is reduced (progressing vertically downward
in the graph), the error decreases and then increases again. If ∆z alone is decreased (progressing
horizontally to the left in the graph), the error similarly decreases first and then increases, until the
scheme becomes unstable. Reducing both ∆t and ∆z simultaneously at fixed D within the stability
sector leads to monotonic convergence. The convergence rate is highest along the lineD = 1/6 because
the scheme then happens to be fourth-order accurate.

stability. The implicit scheme therefore allows us in principle to use a time step as large as we
wish. We immediately sense, of course, that a large time step cannot be acceptable. Should
the time step be too large, the calculated values would not “explode” but would provide a very
inaccurate approximation to the true solution. This is confirmed by comparing the damping
of the numerical scheme against its true value:
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For small D, the scheme behaves reasonably well, but for larger D, even for scales ten times
larger than the grid spacing, the error on the damping rate is similar to the damping rate itself
(Figure 5-12).

Setting aside the accuracy restriction, we still have another problem to solve. To calculate
the left hand side of (5.41) at grid node k, we have to know the values of the yet-unknowns



the evolution of the solution as a function of time. For each of the cases write a small 
description.

2D Advection Algorithm

Implement a rectangular domain and solve the following problems:

Initial condition problem #1 The advection of a circular blob of tracer placed in the 
middle of the domain with constant velocity in one direction (e.g. the x axis)

Boundary condition problem #2 The advection of a tracer from the boundary with constant 
velocity in one direction (e.g. the x axis)

For both of these cases try both a centered advection scheme and the upwind scheme. Plot 
the solution as different time frame to show the evolution of the solution as a function of 
time. Comment on the differences you see in the solution. 

2D Advection Algorithm in a realistic flow

Download the file UV.nc containing a 2D velocity field in a region of ocean of the 
Kuroshio. The file contains 10 time records. The time interval between records is 3days.

Example of velocity field



Use this velocity field in conjunction with your two advection schemes to advect a passive 
tracer released in the area defined by the orange box for about 30days. Comment on the 
solution.


