Shallow-water environments and their sediments

Shelf Seas: areas of submerged continental crust (submerged continental shelf) **TYPES OF SEDIMENTS**

Sediments in shallow-water are TERRIGENOUS (BIOGENIC)

Weathering

Physical (or mechanical) Chemical

Rock fragments Quartz Clays (2 µm)

SOURCES/SUPPLY OF SEDIMENTS

Supply of Sediments to Shelf Seas

UNITS: 10⁹ tonnes/year

SPATIAL DISTRIBUTIONS of SEDIMENT SUPPLY

Discharge from major drainage basins

On long time scales <u>ICE AGES</u> modulate the coastline: Transgressions and Regressions of sea level control weathering and erosion, deposition rates, etc.

Shelf sediments - summary

TYPES

Rock fragments, Quartz and Clays

SOURCE (MAJOR)

Globally: Rivers Locally: Ice and wind transport and volcanic eruption

SHAPE/STRUCTURE of SHELF SEAS

Sea level changes: deposition of rivers/glacial sediments \rightarrow relict sediments

Reworked by waves and tidal currents

Our GOAL is to understand:

Physical and chemical principles that underlie the transport and deposition of sediments in the near shore.

Protect and Manage coastal environments from human intervention

Important principle:

Equilibrium between sedimentation rate and redistribution of sediments

SIZE Classification

TRANSPORT in WATER

flow direction

(a)

Boundary Layer and Current Shear

Shear Stress is proportional to velocity at the bed

TRANSPORT in WATER

flow direction

Erosion: the process by which we set sediments in motion.

suspension suspension

Also take into account:

COHESIVE vs. NON-COHESIVE

WHEN DOES EROSION OCCUR?

Size of grain

TYPES of TRANSPORT EXPECTED and DEPOSITION

 \mathcal{U}

Size of grain

Tidal currents

Rates of sediment transport

Sediment Flux \rightarrow

A) BedloadB) Suspended Load

Maps of SAND TRANSPORT

theoretical net sand transport

Sediment Flux

Suspended Load

Bed Forms

In the ocean the systematic study of bed forms started in 1940 with echo-sounding techniques

low

Ripples

slow current 0.6 mm grain size need viscous sublayer

currents ' height wavelegnth

Mega Ripples

stronger currents up to 1 meter high disturbs ocean surface

Sand Waves

stronger currents up to 18 meter high 1 km wavelegnth

(a)

Ripples

Mega Ripples

swash zone surf zone breaker zone sand dunes ridge or swash bar runnel high-water level shallow low-water level plunge point slope ridge-and-runnel zone longshore bar intertidal sand flats -(a) swash cliffs zone breaker zone berms surf zone steep high-water level slope low-water level plunge point

Beach Morphology

(b)

berm

Gradual slope intertidal sand flats

(f)

Autumn

(2)

Winter

