Climate Change Impacts on Marine Ecosystems

Photo: Keith Ellenbogen I explorers neag

Energy Flow & Ecosystem Functions

Marine ecosystems are maintained by the flow of energy

Ecosystem function (e.g., nutrient cycling, primary and secondary productivity)

Climate Changes and Rising CO2

The physical environment

Rising Sea Level

United States Environmental Protection Agency

Trends in Relative Sea Level Along U.S. Coasts, 1958–2008

Rising Upper Ocean Temperature

nperatur

0.05

0.00

Rising Upper Ocean Temperature

OBSERVATIONS: Trends in degrees over 50 years Pierce et al. 2012

<u>CLIMATE MODELS:</u> Attribution of anthropogenic signature

Changes in Upper Ocean Salinity

OBSERVATIONS: Trends in PSU over 50 years

Pierce et al. 2012

<u>CLIMATE MODELS:</u> Attribution of anthropogenic signature

Fingerprinting Human Induced Changes

Human Induced Changes in Ocean pH

Ocean Carbon Dioxide Levels and Acidity, 1983–2005

Data source: Bindoff, N.L., J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, Y. Nojiri, C.K. Shum, L.D. Talley, and A. Unnikrishnan. 2007. Observations: Oceanic climate change and sea level. In: Climate change 2007: The physical science basis (Fourth Assessment Report). Cambridge, United Kingdom: Cambridge University Press.

For more information, visit U.S. EPA's "Climate Change Indicators in the United States" at www.epa.gov/climatechange/science/indicators.

Climate Changes impacts on Oxygen

Is the Ocean loosing oxygen?

Oxygen Trends @300m 1960-2010

source: Stramma et al. GEOMAR

Climate Changes impacts on Oxygen

Is the Ocean loosing oxygen?

Keeling et al., 2010

Expanding Oxygen Minimum Zones (OMZ)

Warming, reduced ventilation from stratification and circulation changes may contribute to an expansion of the OMZs

Sensitivity of Ocean Taxa to Oxygen

Keeling et al., 2010

Coastal Hypoxia: The Dead Zones

HOW THE DEAD ZONE FORMS

1. Spring Stratification from heating and freshwater

2. Nitrogen Inputs & Blooms
to the surface (e.g. river
runoff or upwelling) trigger
blooms
Flux of organic matter to the
deep

3. Respiration

of organic induces oxygen depletion in the deep

Climate Changes impacts on Oxygen

Costal Hypoxia is increasing leading to Dead Zones

Fig. 1. Global distribution of 400-plus systems that have scientifically reported accounts of being eutrophication-associated dead zones. Their distribution matches the global human footprint [the normalized human influence is expressed as a percent (41)] in the Northern Hemisphere. For the Southern Hemisphere, the occurrence of dead zones is only recently being reported. Details on each system are in tables S1 and S2.

<u>Causes</u>

Increase the amount of bioavailable nitrogen runoff
 Expansion of OMZs

Ecosystem Response to Climate

Physical and chemical changes have strong direct and indirect effects on the physiology and behavior of marine organisms.

Types of Response:

Physiological responses
 Population and Community Responses
 Ecosystem Structure and Function

Physiological Responses

Environmental Change / Types of Response:

Temperature & Oxygen --> Metabolic Rates Constraint adaptation, migration or extinction

Ocean Acidification --> Calcification

lost of biogenic habitats (e.g. corals reefs and oyster beds) alteration of food webs (e.g. pteropods and mollusks) changes in global bio-geochemical cycles (e.g. coccolithophore algae)

Physiological Responses

Environmental Change / Types of Response:

Temperature & Oxygen --> Metabolic Rates Constraint adaptation, migration or extinction

Define: Metabolic Index = -

Oxygen Supply

Oxygen Demand (depends also on Temperature)

F = Metabolic Index (contour maps) Distribution data: Cod

Cod Characteristics:

Depth of habitat 0-400m Mass at maturity 500-1500g Range of F_{crit} 1.3-2.6

Metabolic Index (contour maps)

Seasonal Migration

Metabolic Index (contour maps)

Species Distribution: Seabream

Seabream Characteristics:

Depth of habitat 0-60m Mass at maturity 300-900g Range of F_{crit} 1.6-4.0

Distribution data digitized from Andriashev 1986 and Van Neer 1997

Metabolic Index (contour maps)

Species Distribution: Eelpout

Eelpout Characteristics:

Depth of habitat 0-40m Mass at maturity 100-300g Range of F_{crit} 1.4-3.3

Climate Change impacts on Metabolic Index

Climate Projections

Projected T, O₂ changes in 2071-2100, 0-400m IPCC Earth System Model mean, RCP8.5 scenario

Warming is global, deoxygenation is extra-tropical.

Climate Change impacts on Metabolic Index

Declining Metabolic Index

Projected change in F in 2071-2100, 0-400m IPCC Earth System Model mean, RCP8.5 scenario

Global mean Decrease ~20%

Northern High Latitudes ~40%

Climate Change impacts on Metabolic Index courtesy of C. Deutsch (UCLA) **Temperature vs Oxygen** Oxygen contribution Temperature contribution 60[°]N 60°N 30°N 30°N ∩° 00 30°S 30°5 60°S 60°S 180°W 120°W 60°W $60^{\circ}F$ 120°E 60°W 60°E 120°E 00 180°W 0° 120°W -25 -20 -15 -50 -35 -30 -10 -45 -40 -35 -30 -25 -20 -15 -10 -40 -50 $DF_{02}(\%)$ $DF_{T}(\%)$

Globally, warming and deoxygenation contribute ~15% and 5% reduction of metabolic index, respectively. The role of O_2 is greater in the Pacific, where O2 is already lower.

Climate Change impacts on Metabolic Index

Metabolic Habitat Loss

Physiological Responses

Environmental Change / Types of Response:

Temperature & Oxygen --> Metabolic Rates Constraint adaptation, migration or extinction

Ocean Acidification --> Calcification

lost of biogenic habitats (e.g. corals reefs and oyster beds) alteration of food webs (e.g. pteropods and mollusks) changes in global bio-geochemical cycles (e.g. coccolithophore algae)

Ocean Acidification Forecasts

b

normal seawater

coral Oculina patagonica after being maintained for **12 months** in (a) normal seawater (pH = 8.2) and (b) acidified seawater (pH = 7.4). From Fine & Tchernov (2007). Reprinted with

Photos of scleractinian

acidified seawater

8.2) and (b) acidified seawater (pH = 7.4). From Fine & Tchernov (2007). Reprinted with permission from AAAS

2 mm

Ocean Acidification Forecasts

THREAT TO CORAL REEFS FROM OCEAN ACIDIFICATION IN THE PRESENT, 2030, AND 2050

Acidification may impact calcification in *Corals*

Population and Community Responses

Environmental Change / Types of Response:

Phenology --> Growing Season

changes in primary productivity and predator/prey interaction, changes in net biomass

Ocean Warming --> Species Range

shifts in species distributions and niche boundaries (e.g. invasions) changes in competition and local extinctions

Population and Community Responses

Environmental Change / Types of Response:

Phenology --> Growing Season

changes in primary productivity

and predator/prey interaction, changes in net biomass

Phenology: Timing of seasonal cycle

Fig. 1. Schematic of how phenology (timing) and relative abundance (biomass) affect the degree of trophic match-mismatch (after Durant et al. 2005). The key variable is the degree of trophic overlap of predator needs (continuous line) and prey availability (dashed line) in time and space. Dashed curves reflect biomass of prey (height) and seasonality of prey abundance (position of maximum). Reproductive success and other demographic traits will be high when there is great trophic overlap (grey area under curves)

Population and Community Responses

Environmental Change / Types of Response:

Ocean Warming --> Species Range

shifts in species distributions and niche boundaries (e.g. invasions) changes in competition and local extinctions

Shift in Species Distribution

Ecosystem Structure and Function

Environmental Change / Types of Response:

Ocean Circulation --> Species Compositions
 --> Nutrient Supply
 --> Connectivity

Ocean Transport and Species Composition

Ecosystem Structure and Function

Environmental Change / Types of Response:

Ocean Circulation --> Species Compositions
 --> Nutrient Supply
 --> Connectivity

Changes in Nutrient Supplies in Eastern Boundary Upwelling Systems

Upwelling winds may intensify in response to climate change

Bakun et al. 2010

Intensification of Upwelling winds?

Ecosystem Response to Climate

Physical and chemical changes have strong direct and indirect effects on the physiology and behavior of marine organisms.

Types of Response:

Physiological responses
 Population and Community Responses
 Ecosystem Structure and Function

We have reviewed some examples of responses, however the ecosystem response is more complex and integrated.

Additional Ecosystem Pressures

the need for an integrated approach to Ecosystem Structure and Function

