# Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates

# Youngjune Park\*, Do-Youn Kim\*<sup>†</sup>, Jong-Won Lee<sup>‡</sup>, Dae-Gee Huh<sup>§</sup>, Keun-Pil Park<sup>§</sup>, Jaehyoung Lee<sup>§</sup>, and Huen Lee\*<sup>¶</sup>

\*Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, 305-701 Daejeon, Republic of Korea; <sup>‡</sup>Department of Environmental Engineering, Kongju National University, 275 Budae-dong, Cheonan, 330-717 Chungnam, Republic of Korea; and <sup>§</sup>Korea Institute of Geoscience and Mineral Resources, 30 Gajeong-dong, Yuseong-gu, 305-350 Daejeon, Republic of Korea

Edited by James P. Kennett, University of California, Santa Barbara, CA, and approved July 3, 2006 (received for review March 20, 2006)

Large amounts of CH<sub>4</sub> in the form of solid hydrates are stored on continental margins and in permafrost regions. If these CH<sub>4</sub> hydrates could be converted into CO<sub>2</sub> hydrates, they would serve double duty as CH<sub>4</sub> sources and CO<sub>2</sub> storage sites. We explore here the swapping phenomenon occurring in structure I (sl) and structure II (sll) CH<sub>4</sub> hydrate deposits through spectroscopic analyses and its potential application to CO<sub>2</sub> sequestration at the preliminary phase. The present 85% CH<sub>4</sub> recovery rate in sI CH<sub>4</sub> hydrate achieved by the direct use of binary N2 + CO2 guests is surprising when compared with the rate of 64% for a pure CO<sub>2</sub> guest attained in the previous approach. The direct use of a mixture of  $N_2 + CO_2$ eliminates the requirement of a CO<sub>2</sub> separation/purification process. In addition, the simultaneously occurring dual mechanism of CO<sub>2</sub> sequestration and CH<sub>4</sub> recovery is expected to provide the physicochemical background required for developing a promising large-scale approach with economic feasibility. In the case of sII CH<sub>4</sub> hydrates, we observe a spontaneous structure transition of sll to sl during the replacement and a cage-specific distribution of guest molecules. A significant change of the lattice dimension caused by structure transformation induces a relative number of small cage sites to reduce, resulting in the considerable increase of CH4 recovery rate. The mutually interactive pattern of targeted guestcage conjugates possesses important implications for the diverse hydrate-based inclusion phenomena as illustrated in the swapping process between CO<sub>2</sub> stream and complex CH<sub>4</sub> hydrate structure.

clathrate | CO<sub>2</sub> sequestration | methane | swapping phenomenon | NMR

**B** ecause the total amount of natural gas hydrate was estimated to be about twice as much as the energy contained in fossil fuel reserves (1, ||), many researchers have tried to find a way to exploit CH<sub>4</sub> hydrates deposited worldwide as a new energy source. For recovering them at various conditions in an efficient way, several strategies such as thermal treatment, depressurization, and inhibitor addition into the hydrate layer have been proposed (2). However, all of these methods are based on the decomposition of CH<sub>4</sub> hydrate by external stimulation, which can trigger catastrophic slope failures (3). Furthermore, if CH<sub>4</sub> hydrate decomposes rapidly, it is also possible that the CH<sub>4</sub> released from the hydrate could transfer to the air and significantly accelerate the greenhouse effect (4).

Recently, the replacement of  $CH_4$  hydrate with  $CO_2$  has been suggested as an alternative option for recovering  $CH_4$  gas. When  $CO_2$  itself is put under certain pressure, a solid  $CO_2$  hydrate can be formed according to the stability regime (5). In addition, the formation condition of  $CO_2$  hydrate is known to be more stable than that of  $CH_4$  hydrate. Therefore, the swapping process between two gaseous guests is considered to be a favorable approach toward long-term storage of  $CO_2$ . It not only enables the ocean floor to remain stabilized even after recovering the  $CH_4$  gas, because  $CH_4$  hydrate maintains the same crystalline structure directly after its replacement with  $CO_2$ , but also makes the swapping process more viable by enhancing its economical efficiency. Of course, a variety of external variables such as injection depth, salt concentration, and initial droplet size of liquid CO<sub>2</sub> may affect the fundamental dynamics of hydrate formation (6–9). Accordingly, intense investigations concerning the effect of external factors and the realization of the process have been performed. Using *in situ* Raman spectroscopy, Komai *et al.* (10) measured the replacement rate between CO<sub>2</sub> and CH<sub>4</sub> occurring in the CH<sub>4</sub> hydrates and found that CO<sub>2</sub> hydrates reform at both the surface and inside of both CH<sub>4</sub> hydrate samples and ice crystals appear, coexisting with the hydrate phase as well.

Although numerous hydrate studies, covering both macroscopic and microscopic approaches, have recently been conducted for a variety of purposes, and to a certain extent have yielded notable success, little attention has been paid to cage dynamics exploring guest distributions within the sensitive hostguest networks. Moreover, the complex hydrate behavior occurring under strong attacks of external guest molecules to the existing cages has not yet been fully considered, and no detailed study exists even at a very fundamental level. In our previous work (11, 12), we explored the replacement mechanism of  $CH_4$ hydrate with CO<sub>2</sub> by using spectroscopic methods and found that, when a CH<sub>4</sub> hydrate is exposed to gas mixtures containing CO<sub>2</sub>, CH<sub>4</sub> is replaced by CO<sub>2</sub> mainly in the large cages. If the CH<sub>4</sub> hydrates could be converted into CO<sub>2</sub> hydrates, they would serve double duty as CH<sub>4</sub> sources and CO<sub>2</sub> storage sites. Here, we further extend our investigations to consider the occurrence of CO<sub>2</sub> replacement phenomena on structure II (sII) hydrate, which is thought to exist in the seabed. Using this point of view, we present an interesting conclusion reached by inducing a structure transition. A microscopic analysis was conducted to examine the real swapping phenomena occurring between CO<sub>2</sub> guest molecules and sII hydrate through spectroscopic identification, including solid-state NMR spectrometry and Fourier transform-Raman spectrometry. More importantly, we also investigated the possibility of direct use of a binary N<sub>2</sub> and CO<sub>2</sub> gas mixture for recovering CH<sub>4</sub> from the hydrate phase, which showed a remarkably enhanced recovery rate by means of the cage-specific occupation of guest molecules because of their molecular properties.

## **Results and Discussion**

Direct Sequestration of CO<sub>2</sub> and N<sub>2</sub> Mixtures into Structure I (sl) CH<sub>4</sub> Hydrates. In previous work (11, 12) we verified that the CH<sub>4</sub> amount that could be recovered by replacing sI CH<sub>4</sub> hydrate with CO<sub>2</sub> could reach  $\approx 64\%$  of the hydrate composition. CO<sub>2</sub> molecules only preferably replaced CH<sub>4</sub> in large cages, whereas

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: sl, structure l; sll, structure ll; MAS, magic angle spinning.

<sup>&</sup>lt;sup>†</sup>Present address: Research and Development Center, SK Engineering and Construction, 110-300 Seoul, Republic of Korea.

<sup>&</sup>lt;sup>¶</sup>To whom correspondence should be addressed. E-mail: h\_lee@kaist.ac.kr.

Makogon, Y. F., The Third International Chemical Congress of North America, June 5–10, 1988, Toronto, Canada.

<sup>© 2006</sup> by The National Academy of Sciences of the USA

CH<sub>4</sub> molecules in small cages remained almost intact. Because of such a preferential cage occupation of guest molecules, the recovery rate of CH<sub>4</sub> was limited to the maximum value of 64%. This swapping process accomplished by the direct attacks of external guests is considered to be a favorable method for long-term storage of CO<sub>2</sub>. It also enables the ocean floor to remain stabilized even after recovering the CH<sub>4</sub> gas, because the sI CH<sub>4</sub> hydrate maintains the same crystalline structure directly after its replacement with CO<sub>2</sub>. Is it possible to completely achieve the spontaneous exchange by extracting CH<sub>4</sub> molecules and substituting any other guest molecules to most of the small cages already existing in sI CH<sub>4</sub> hydrate? We first attempted to examine the real swapping phenomenon occurring between binary guest molecules of N2 and CO2 and crystalline sI CH4 hydrate through spectroscopic identification. In accordance with the idealized cage-specific pattern of multiple guests, N2 molecules attack CH<sub>4</sub> molecules occupying small cages (sI-S) and eventually take the sites, whereas CO<sub>2</sub> molecules specifically play an active role in replacing most of the CH<sub>4</sub> molecules in large cages (sI-L). Such a unique cage occupancy behavior might be attributed to molecular details of the participating guests. CO2 has a molecular diameter almost identical with the small cage diameter of sI hydrate, and a certain degree of distortion in small cages should be required to accommodate  $CO_2$  molecules. Accordingly, we sufficiently expect that  $CO_2$  molecules could be more stably encaged in sI-L under a favorable host-guest interaction. On the other hand, N2 is known as one of the smallest hydrate formers and its molecular size almost coincides with CH<sub>4</sub>. Although N<sub>2</sub> itself forms pure sII hydrate with water (13), the relatively small size of  $N_2$  molecules leads to the preference of sI-S over other cages and, moreover, the stabilization of the overall sI hydrate structure when N<sub>2</sub> directly participates in forming the hydrate. Accordingly, CH4 and N2 are expected to compete for better occupancy to sI-S, whereas CO<sub>2</sub> preferentially occupies only sI-L without any challenge from other guests. Thus, the capacity of these two external guests, N<sub>2</sub> and CO<sub>2</sub>, in extracting original CH<sub>4</sub> molecules would make it possible for diverse CO<sub>2</sub> streams to be directly sequestrated into natural gas hydrate deposits.

To verify several key premises mentioned above we first identified the ternary guest distribution in cages by means of Raman and <sup>13</sup>C NMR spectra. First, for a qualitative description of cage occupancy enforced by N<sub>2</sub> molecules, we measured the Raman spectra of the ternary  $CH_4 + N_2 + CO_2$  hydrates formed from several different compositions (Fig. 5, which is published as supporting information on the PNAS web site). These Raman peaks confirm that the approaching N2 molecules have sufficient ability to expel CH<sub>4</sub> molecules already existing in cages and be stabilized in the host lattice. On the other hand, the NMR spectrum shown in Fig. 1*a* provides clear evidence that  $CO_2$ molecules are distributed only in sI-L, whereas CH<sub>4</sub> molecules remained in both sI-S and sI-L even after completion of replacement as shown in Fig. 1b. The qualitative information of cage dynamics in sI-S and sI-L concerning CO2 molecules could be obtained by analyzing the <sup>13</sup>C cross polarization NMR spectral shape of the mixed hydrate. For CO<sub>2</sub> entrapped in hydrate cages, an anisotropic chemical shift is induced by asymmetry in the immediate environment of molecules and is sensitively affected by the guest distribution in hydrate cages (14). As the sI-S produces pseudospherical symmetry, which causes molecular motions to be isotropic, only a sharp peak at an isotropic chemical shift of  $\approx 123$  ppm is observed for CO<sub>2</sub> (15, 16). For hydrate samples prepared after replacement, no clear isotropic line appeared and thus CO<sub>2</sub> molecules were not observed in sI-S, as can be seen in Fig. 1a. However, a powder pattern having an anisotropic chemical shift of -55.8 ppm was observed, and this spectral shape reflects the anisotropic motion of CO<sub>2</sub> molecules in asymmetric sI-L. The anisotropic chemical



**Fig. 1.** The N<sub>2</sub> + CO<sub>2</sub> mixture consists of 20 mol% CO<sub>2</sub> and balanced N<sub>2</sub>. <sup>13</sup>C NMR spectra of CH<sub>4</sub> hydrates replaced with N<sub>2</sub> + CO<sub>2</sub>: blue line, before replacement; red line, after replacement. (a) <sup>13</sup>C cross-polarization NMR spectra for identifying replaced CO<sub>2</sub> molecules in CH<sub>4</sub> hydrates. (b) <sup>13</sup>C MAS NMR spectra for identifying residual CH<sub>4</sub> molecules in CH<sub>4</sub> hydrates.

shift is defined as  $\Delta = \delta_{iso} - \delta_{zz}$ , (15, 16) where  $\delta_{iso}(= (2\delta_{xx} + \delta_{zz})/3)$  is the isotropic chemical shift, and  $\delta_{xx}$  (= 99.6 ppm) and  $\delta_{zz}$  (= 183.3 ppm) are the *xx* and *zz* components of the chemical shift tensor in Fig. 1*a*, respectively. However, for CH<sub>4</sub> molecules, the <sup>13</sup>C magic angle spinning (MAS) NMR spectra (Fig. 1*b*) were taken at conditions before/after replacement and two peaks were clearly identified as representing CH<sub>4</sub> in sI-S and sI-L, respectively. Here, we note that the CH<sub>4</sub> in sI-S was replaced mainly with N<sub>2</sub>, whereas CO<sub>2</sub> replaced CH<sub>4</sub> in sI-L. However, further spectroscopic evidence might be required before the pattern of N<sub>2</sub> cage occupancy is more definitively established.

Another important aspect of the present research was to explore the cage-specific distribution of N<sub>2</sub>, CO<sub>2</sub>, and CH<sub>4</sub> and their kinetic behavior during the replacement process. Two peaks representing CH<sub>4</sub> in sI-S (2,914 cm<sup>-1</sup>) and CH<sub>4</sub> in sI-L (2,904 cm<sup>-1</sup>) continuously decreased during a replacement period of 750 min, but subsequently no noticeable change occurred in the peak intensity (Fig. 2*a*). This kinetic pattern can also be confirmed by cross checking them with the corresponding Raman peaks of N<sub>2</sub> and CO<sub>2</sub> (Fig. 2 *b* and *c*). The quantitative analysis revealed that 23% of CH<sub>4</sub> in hydrate is replaced with N<sub>2</sub> whereas 62% of CH<sub>4</sub> is replaced with CO<sub>2</sub>. Accordingly, ≈85% of CH<sub>4</sub> encaged in saturated CH<sub>4</sub> hydrate is recovered. This recovery rate is expected to change with variations of external



**Fig. 2.** In situ Raman spectra of CH<sub>4</sub> hydrate replaced with  $N_2 + CO_2$  (80 mol%  $N_2$  and 20 mol%  $CO_2$ ) mixture. (a) C–H stretching vibrational modes of CH<sub>4</sub> molecules in the replaced CH<sub>4</sub> hydrate. (b) N–N stretching vibrational modes of N<sub>2</sub> molecules in the replaced CH<sub>4</sub> hydrate. (c) C=O stretching and bending vibrational modes of CO<sub>2</sub> molecules encaged in the large cages of the replaced CH<sub>4</sub> hydrate.

variables such as pressure, temperature, and hydrate particle size. The overall kinetic results (Fig. 6, which is published as supporting information on the PNAS web site) led us to conclude that the replacement of  $CH_4$  with  $N_2 + CO_2$  proceeds more effectively in crystalline hydrate than in the case of using only

pure  $CO_2$ , because  $N_2$  molecules are confirmed to offer the excellent cage–guest interaction in an unusual configuration. Even for the simple hydrate systems assessed in the present work, the unique cage dynamics drawn from spectroscopic evidence should offer insight into the inclusion phenomena, particularly,



**Fig. 3.** Replacement of the sll  $Ch_4 + C_2H_6$  hydrate with  $CO_2$ . (a) Schematic diagram of  $CH_4 + C_2H_6$  hydrate replaced with  $CO_2$ . Before the swapping phenomena occurred, all of the sll-S and most of the sll-L cages were occupied by  $CH_4$  (red balls). After the replacement was fully achieved, structure changed from sll to sl, and most of the  $CH_4$  and  $C_2H_6$  (purple balls) molecules were replaced by  $CO_2$  (blue balls). (b) The <sup>13</sup>C high-power decoupling MAS NMR of mixed  $CH_4 + C_2H_6$  hydrate replaced with  $CO_2$ . The samples were measured at 203 K. (c) The Raman spectra of the mixed  $CH_4 + C_2H_6$  hydrate replaced with  $CO_2$  at 123 K. The peak intensity of  $CO_2$  symmetric stretching and bending vibration increases as the hydration goes to completion.

the host lattice-guest molecule interaction and the guest-guest replacement mechanism.

CO<sub>2</sub> Sequestration into sll CH<sub>4</sub> Hydrates. The sII hydrate, which is known to be formed by the influence of thermogenic hydrocarbon and mainly includes oil-related C<sub>1</sub>-C<sub>4</sub> hydrocarbons (13), was discovered at a shallow depth in sea floor sediment in a few sites such as the Gulf of Mexico outside the Caspian Sea (17, 18). Among major hydrocarbons, C<sub>2</sub>H<sub>6</sub> is specially selected to form a hydrate with  $CH_4$ . We note that both  $CH_4$  and  $C_2H_6$  form simple crystalline sI hydrates with water. However, when they are mixed within the limits of specific concentrations, they act as binary guests causing the formation of a sII double hydrate (19). For experimental convenience we only treated C<sub>2</sub>H<sub>6</sub> exclusive of propane and butanes; otherwise the use of multiguests makes spectroscopic identification much too complicated. Accordingly, in the present work, replacement of the mixed  $CH_4 + C_2H_6$ hydrate with CO<sub>2</sub> was performed to investigate the swapping phenomena on sII CH4 hydrate. Fig. 3b shows the <sup>13</sup>C highpower decoupling MAS NMR spectra of mixed CH<sub>4</sub> + C<sub>2</sub>H<sub>6</sub> hydrates that are replaced with CO<sub>2</sub> molecules at 274.15 K and 35 bar just below the equivalent  $CO_2$  vapor pressure. The same swapping test was carried out at the higher pressure of 42 bar at which the CO<sub>2</sub> exists as a liquid phase. The resulting NMR spectra appear to be essentially identical with those measured at 35 bar, recovering 90% for CH<sub>4</sub> and 97% for C<sub>2</sub>H<sub>6</sub> as shown in Figs. 7 and 8, which are published as supporting information on the PNAS web site. Three peaks representing CH4 in sII-S, CH4 in sII-L, and  $C_2H_6$  in sII-L appeared at chemical shifts of -3.95, -7.7, and 6.4 ppm, respectively. Interestingly, during the swapping process, the external guest CO<sub>2</sub> molecules attack both small and large cages for better occupancy, which causes the structure transition of sII to sI to continuously proceed. Within 24 h the sII peaks almost disappeared and instead only a very small amount of CH<sub>4</sub> in sI-S and sI-L and C<sub>2</sub>H<sub>6</sub> in sI-L was detected at chemical shifts of -4.0, -6.1, and 7.7 ppm, respectively (19). From a structural viewpoint, it is speculated that the hydrate lattices are slightly adjusted to accommodate the three guests of CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, and CO<sub>2</sub> in highly stabilized hydrate networks.

A Raman study was also performed to confirm the molecular distribution of  $CO_2$  and assess the spontaneous exchange by extracting CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> and substituting CO<sub>2</sub> molecules; the resulting spectra are shown in Fig. 3c. The Raman spectra of CO<sub>2</sub> in vapor phase have Fermi diads of symmetric stretching (1,286  $cm^{-1}$ ) and bending vibration (1,389  $cm^{-1}$ ) with hot bands (1,266 and 1,410 cm<sup>-1</sup>). However, when CO<sub>2</sub> molecules are enclosed by hydrate networks, the Fermi diads are broadened and redshifted, and the hot bands become undistinguishable (20). As the hydration is completed, the  $CO_2$  peaks of symmetric stretching and bending vibration assigned as sII cages of 1,278 and 1,386  $cm^{-1}$  grew and shifted to sI cages of 1,277 and 1,382  $cm^{-1}$ , respectively. The cage-specific behavior revealed by CO<sub>2</sub> is expected according to its molecular dimension over a small cage. Thus, the approaching  $CO_2$  competes only with  $CH_4$  and  $C_2H_6$ in sII-L at the initial stage of swapping. The CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> expelled from sII-L provoke a loss of sustainability of sII phase by exceeding the limit of critical guest concentration. The reestablishment process of guest molecule distribution in the hydrate network induces the hydrate structure to alter and ultimately adjusts the lattice dimension for sI. Another important feature noted from this complex host-guest inclusion phenomenon is that  $CO_2$  molecules are capable of filling the sI-S under a fresh crystal configuration. Meanwhile, for a simple swapping process between CO<sub>2</sub> and sI CH<sub>4</sub> hydrate, only a few  $CO_2$  guests occupy the sI-S, weakening the actual  $CO_2$  storage capacity from an ocean sequestration point of view. According to previous work (11, 12),  $CO_2$  replacement occurs only at sI-L, but CH<sub>4</sub> molecules in sI-S remain barely intact. At the present



**Fig. 4.** Replacement kinetics of guest molecules in the sI and sII hydrates. (a) Relative moles in the sII CH<sub>4</sub> + C<sub>2</sub>H<sub>6</sub> hydrate replaced with CO<sub>2</sub> measured by gas chromatography. (b) Replacement rate of CH<sub>4</sub> molecules encaged in sI CH<sub>4</sub> hydrates by N<sub>2</sub> + CO<sub>2</sub> mixture (square) and in sII CH<sub>4</sub> hydrate by pure CO<sub>2</sub> (circle). The recovered CH<sub>4</sub> is 85% for the N<sub>2</sub> + CO<sub>2</sub> mixture and 92% for sII CH<sub>4</sub> hydrate with CO<sub>2</sub>. The dotted line represents the 64% recovery rate of CH<sub>4</sub> obtained during the swapping process between sI CH<sub>4</sub> hydrate and pure CO<sub>2</sub>.

stage, we focus specifically on guest distributions of sI and sII hydrates that have ideally stoichiometric formulae of 2 D·6 T·46 H<sub>2</sub>O and 16 D·8 H·136 H<sub>2</sub>O in a unit cell, respectively (21), where D is cage of 5<sup>12</sup>, T is cage of 5<sup>12</sup>6<sup>2</sup>, and H is cage of 5<sup>12</sup>6<sup>4</sup>. However, when considering the equivalent number of water molecules in both hydrates, sI hydrate has a revised formula, represented by 5.9 D·17.7 T·136 H<sub>2</sub>O. Regardless of whether the transition of sII to sI occurs coercively or spontaneously, the structure transformation leads to a reduction of total sI-S sites by 10.1 in the dimension of a unit cell and induces CH<sub>4</sub> molecules in cages to be more readily recovered.

The effect of a substantial small-cage reduction on CH<sub>4</sub> recovery rate was checked by the GC analysis; the results are shown in Fig. 4a. During the swapping process, the CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> molecules in hydrate phase continuously decrease until they reach the recovery rate of 92% for  $CH_4$  and 99% for  $C_2H_6$ . Both the NMR and GC results imply that most of the CH<sub>4</sub> molecules in sI-L and sI-S were displaced by CO2 molecules. The externally approaching CO2 guests attack and occupy most of the sII-S and sII-L cages, accompanying structure transition of sII to sI as illustrated in Fig. 3a. We note again that CO<sub>2</sub> molecules possess a sufficient enclathration power to be entrapped in sI-S during change of sII to sI, whereas the CO<sub>2</sub> occupancy to sI-S of pure CH<sub>4</sub> hydrate is very difficult to occur. The 30% or more  $CH_4$  recovery enhancement in sII and >64% in sI is caused by structure transition totally altering the host-guest interactions during swapping. Furthermore, the naturally occurring sII hydrates contain more CH<sub>4</sub> than the laboratory-made sII hydrates used in these experiments (18, 22, 23) and thus the actual limitation of recoverable CH<sub>4</sub> in sII hydrate would be higher than the present outcome of 92%. We also examined the swapping capacity of the  $N_2 + CO_2$  mixture occurring in the mixed sII CH<sub>4</sub> + C<sub>2</sub>H<sub>6</sub> hydrate and found that the recovery rates are 95% for CH<sub>4</sub> and 93% for C<sub>2</sub>H<sub>6</sub> (Figs. 9 and 10, which are published as supporting information on the PNAS web site). Accordingly, with the better hope we might use the deep-ocean sII CH<sub>4</sub> hydrate layers for effectively sequestrating CO<sub>2</sub> without any loss of recoverable CH<sub>4</sub> amount.

#### Conclusion

First, we focused on the direct sequestration of gas mixtures containing CO<sub>2</sub> and N<sub>2</sub> into the preponderant sI naturally occurring CH<sub>4</sub> hydrate deposits. However, for ocean storage, recently proposed approaches require that injected CO<sub>2</sub> must be in a pure state, and thus an appropriate separation procedure of  $CO_2$  from the mixed gas must be conducted. A spectroscopic analysis reveals that the external N2 molecules specifically attack CH<sub>4</sub> molecules already entrapped in sI-S and play a significant role in substantially increasing the CH<sub>4</sub> recovery rate. On the contrary, during swapping the sII CH<sub>4</sub> hydrate structurally transforms to sI, which causes CH4 molecules in sII-S to spontaneously be released through a continuous reduction of small cage sites. The cage-specific occupation accomplished by direct invasion of external guest molecules largely depends on their molecular details that appear to be so complex for visualization, but this mutually interactive pattern of targeted guest-cage conjugates might possess an important implication on the extensive hydrate-based applications as clearly illustrated in the swapping process between CO<sub>2</sub> stream and CH<sub>4</sub> hydrate. However, the swapping rate and total yield of the replacement reaction in actual natural gas hydrate deposits will depend on a variety of factors such as particle size and gas transport.

### **Materials and Methods**

Sample Preparations and Swapping Procedures. CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>, and C<sub>2</sub>H<sub>6</sub> were purchased from Praxair Technology (Danbury, CT), with a stated minimum purity of 99.995 mol%. The hydrate samples were prepared in a mechanically stirred reactor having the volume of 300 cm<sup>3</sup> and formed from finely pulverized ice particles crushed in a mortar and pestle. The reactor, which maintained a constant temperature of 274.15 K, was filled with powdered ice particles and then pressurized with gases to a higher pressure than the corresponding three-phase equilibrium pressure at the same temperature. A sufficient amount of gas molecules was supplied to minimize the possible effect of the ice/gas molar ratio on the hydrate-phase composition. A mechanical stirrer agitated the ice particles during the entire

- 1. Collett, T. S. & Kuuskraa, V. A. (1998) Oil Gas J. 11, 90-95.
- Gunn, D. A., Nelder, L. M., Rochelle, C. A., Bateman, K., Jackson, P. D., Lovell, M. A., Hobbs, P. R. N., Long, D., Rees, J. G., Schultheiss, P., et al. (2002) *Terra Nova* 14, 443–450.
- 3. Lelieveld, J. & Crutzen, P. J. (1992) Nature 355, 339-342.
- Ohgaki, K., Takano, K. & Moritoki, M. (1994) Kagaku Kogaku Ronbunshu 20, 121–123.
- Brewer, P. G., Friederich, G., Peltzer, E. T. & Orr, F. M., Jr. (1999) Science 284, 943–945.
- Kimuro, H., Yamaguchi, F. & Ohtsubo, K. (1993) Energ. Convers. Manage. 34, 1089–1094.
- 7. Handa, Y. P. & Stupin, D. Y. (1992) J. Phys. Chem. 96, 8599-8603.
- 8. Seo, Y., Lee, H. & Uchida, T. (2002) Langmuir 18, 9164-9170.
- Lee, J.-W., Chun, M.-K., Lee, K.-M., Kim, Y.-J. & Lee, H. (2002) Korean J. Chem. Eng. 19, 673–678.
- Komai, T., Kawamura, T., Kang, S., Nakashima, K. & Yamamoto, Y. (2002) J. Phys. Condens. Matt. 14, 11395–11400.
- Lee, H., Seo, Y., Seo, Y.-T., Moudrakovski, I. L. & Ripmeester, J. A. (2003) Angew. Chem. 115, 5202–5205.
- Lee, H., Seo, Y., Seo, Y.-T., Moudrakovski, I. L. & Ripmeester, J. A. (2003) Angew. Chem. Int. Ed. 42, 5048–5051.

formation process to provide a fresh surface to participate in the formation of gas hydrates. The formation and dissociation steps were repeated at least four times to avoid the possible appearance of metastable structures. After completing the formation process, the hydrate was sampled and transported to the sample holder.

After making  $CH_4$  or  $CH_4 + C_2H_6$  hydrate with a mechanically stirred high-pressure reactor, these hydrate samples were moved to another high-pressure reactor to experience the replacement with  $N_2 + CO_2$  mixture or pure  $CO_2$ . During the movement of these hydrates into another reactor, sample treatment was performed in an atmosphere of liquid nitrogen to keep the prepared sample from dissociating. Immediately after putting the reactor in the water bath whose temperature, 274.15 K, was maintained by an external controller (RBC-20; JEIO Tech, Seoul, Republic of Korea), the  $N_2 + CO_2$  gas mixture of 120 bar or pure  $CO_2$  gas of 35 bar precooled at 274.15 K was introduced into the reactor.

NMR and Raman Analysis. To identify hydrate structure and guest distribution, a Bruker (Billerica, MA) AVANCE 400-MHz solid-state NMR spectrometer was used in this study. The powdered samples were placed in a 4-mm o.d. zirconia rotor loaded into a variable temperature probe. All <sup>13</sup>C NMR spectra were recorded at a Larmor frequency of 100.6 MHz with MAS at  $\approx 5$  kHz. The pulse length of 2  $\mu$ s and pulse repetition delay of 15 s under proton decoupling were used with a radio frequency field strength of 50 kHz, corresponding to  $5-\mu s 90^{\circ}$ pulses. The downfield carbon resonance peak of adamantane, assigned a chemical shift of 38.3 ppm at 300 K, was used as an external chemical shift reference. For the mixed hydrate samples,  ${}^{13}CO_2$  gas was used to obtain higher intensity  $CO_2$  peaks. The RFS-100S Fourier transform-Raman spectrometer (Bruker) with a highly sensitive InGaAs detector cooled by liquid nitrogen was used. The excitation source was an air-cooled diode-pumped Nd;YAG laser. The scattered radiation was collected through a slit with 180° geometry at 300  $\mu$ m. Spectra were collected with a resolution of 1 cm<sup>-1</sup> scanning step, and typically 512 scans were averaged to obtain each spectrum. The highpressure cell equipped with sapphire windows was also used for in situ Raman measurements.

This research was performed by the National Research Laboratory Program of the Korea Science and Engineering Foundation funded by the Ministry of Science and Technology of Korea and Gas Hydrate Research and Development Project funded by the Ministry of Commerce, Industry, and Energy of Korea, also partially supported by the Brain Korea 21 Project.

- 13. Sloan, E. D., Jr. (1998) Clathrate Hydrates of Natural Gases (Dekker, New York), 2nd Ed.
- 14. Ripmeester, J. A. & Ratcliffe, C. I. (1988) Energy Fuels 12, 197-200.
- 15. Seo, Y. -T & Lee, H. (2004) J. Phys. Chem. B 108, 530-534.
- 16. Kim, D.-Y. & Lee, H. (2005) J. Am. Chem. Soc. 127, 9996-9997.
- Yousuf, M., Qadri, S. B., Knies, D. I., Grabowski, K. S., Coffin, R. B. & Pohlman, J. W. (2004) *Appl. Phys. A* 78, 925–939.
- Sassen, R., Sweet, S. T., DeFreitas, D. A. & Milkov, A. V. (2000) Org. Geochem. 31, 1257–1262.
- Subramanian, S., Kini, R. A., Dec, S. F. & Sloan, E. D., Jr. (2000) Chem. Eng. Sci. 55, 1981–1999.
- Amadeu, K., Sum, R., Burruss, C. & Sloan, E. D., Jr. (1997) J. Phys. Chem. B 101, 7371–7377.
- 21. Sloan, E. D., Jr. (2003) Nature 426, 353-359.
- 22. Brooks, J. M., Kennicutt, M. C., Fay, R. R. & McDonald, T. J. (1984) *Science* 225, 409–411.
- Milkov, A. V., Claypool, G. E., Lee, Y.-J., Torres, M. E., Borowski, W. S., Tomaru, H., Sassen, R., Long, P. E. & ODP Leg 204 Scientific Party (2004) Org. Geochem. 35, 1067–1080.